
Batch to Real-Time: Incremental Data Collection & Analytics Platform

Ahmet Arif Aydin
University of Colorado Boulder

ahmet.aydin@colorado.edu

Kenneth M. Anderson
University of Colorado Boulder

ken.anderson@colorado.edu

Abstract
Real-time data collection and analytics is a

desirable but challenging feature to provide in data-
intensive software systems. To provide highly
concurrent and efficient real-time analytics on
streaming data at interactive speeds requires a well-
designed software architecture that makes use of a
carefully selected set of software frameworks. In this
paper, we report on the design and implementation of
the Incremental Data Collection & Analytics Platform
(IDCAP). The IDCAP provides incremental data
collection and indexing in real-time of social media
data; support for real-time analytics at interactive
speeds; highly concurrent batch data processing
supported by a novel data model; and a front-end web
client that allows an analyst to manage IDCAP
resources, to monitor incoming data in real-time, and
to provide an interface that allows incremental queries
to be performed on top of large Twitter datasets.

1. Introduction

Every day, large amounts of data are generated by a
variety of computational systems. It is important for an
organization to have tools that can manage these large
data sets while also providing real-time analytics on
streaming data. Thus, organizations must struggle with
the design of data-intensive software systems [15, 17].

We are a team of software engineering researchers
working on Project EPIC at the University of Colorado
[20] on a research area known as crisis informatics.
Project EPIC studies how members of the public make
use of social media during times of crisis [21, 22];
crisis informatics software collects and analyzes the
information generated on social media during times of
mass emergency. To conduct research in crisis
informatics, we have been collecting and analyzing
large Twitter data sets since Fall 2009. We face
significant challenges storing billions of tweets and
processing them such that they can be efficiently
browsed, annotated, and analyzed [4].

We have previously reported on EPIC Collect [1, 2,
24], Project EPIC’s Twitter data collection

infrastructure, and the design challenges we faced in
producing a production software system within a
collaborative, multidisciplinary research project. We
have also reported on EPIC Analyze [3], the data
analysis environment we built to allow Project EPIC
analysts to browse, search, sample, filter, sort, and
annotate large Twitter data sets. EPIC Analyze is
focused on the batch processing of crisis data after a
crisis event is over. Now, we need to collect and
analyze crisis data in real-time during a crisis event.

In this paper, we report on the Incremental Data
Collection & Analytics Platform (IDCAP); it is a new
data analytics platform that addresses certain
limitations of EPIC Collect and EPIC Analyze that
prevented them from providing real-time analytics over
Project EPIC’s datasets. The IDCAP thus provides a
way to transition Project EPIC from batch-oriented
style data processing to real-time data collection and
analytics. The IDCAP is a robust, reliable, fault
tolerant and 24/7 available data collection and analytics
platform. The IDCAP collects tweets via the Twitter
Streaming API and stores tweets in Cassandra in an
incremental and scalable fashion; it is able to provide
greatly improved and significantly faster batch data
analysis on previously collected Twitter data sets while
also providing real-time analytics on streaming crisis
data. Furthermore, the IDCAP is an example of a data-
intensive software system that provides insight into the
types of techniques and technologies that must be
combined to implement such systems and ensure that
they are scalable, reliable, and efficient [7].

This paper is organized as follows. In Section 2, we
discuss the design challenges of data intensive software
systems. In Section 3, we discuss the design of the
IDCAP and discuss its front-end application, the IDCA
App, in Section 4. In Section 5, we present our
evaluation and then discuss related work in Section 6.
In Section 7, we conclude with our contributions.

2. Design Challenges

The design of data intensive software systems
introduces many challenges. The primary challenges
are 1) identifying a proper software architectural

5911

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41876
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

design for the system to handle the velocity of
streaming data in a 24/7, reliable, fault tolerant, and
scalable fashion [14, 19]; 2) incrementally indexing
data streams in real-time to provide real-time data
analysis and creating an indexing schema for later
batch analytics; and 3) handling the volume of data by
permanently storing incrementally indexed data in a
scalable fashion in a persistent store to support batch
data processing and analysis [4].

The design of software architecture is paramount
[12, 23] because it explicitly impacts not only
operational properties such as performance, reliability,
and availability, but also quality attributes of a system
such as changeability, reusability, and maintainability
[13, 18]. The software architecture of a system
provides a view of a system’s components, the way
those components interact, and their responsibilities
[10, 16]. Therefore, using the right set of technologies
allows one to meet the design goals of the system and
provides efficient generation of metrics and statistics
and fast exploratory analysis on large datasets [3]. The
rise of big data has triggered the demand for a scalable
data analytics software architecture and a flexible data
processing infrastructure to handle diverse and various
analysis requests in real-time and later in the batch
processing of large amounts of data. In our own
research, finding a unifying software architecture that
contains the right set of components and data models to
achieve these goals has taken years of experimentation
and iterative design. The IDCAP is our most recent
attempt at achieving this goal; it outperforms our
previous efforts significantly.

With respect to indexing, capturing data in real-
time in a scalable and highly concurrent fashion
without losing any information is a challenging task
[8]. There are two difficult challenges related to
indexing data streams in real-time. The first is what
data structure can be used to store data such that a
global index is created that is capable of answering the

types of questions that analysts ask. This structure must
be one that allows for efficient queries but also
efficient inserts of new information into the index to
allow for real-time data analysis. The second challenge
is how can such an index be generated in an
incremental fashion? Most techniques that operate in
real-time divide the streaming data into short windows
of time. The challenge then is to generate a mini-index
of all tweets received in the last window, update all
active metrics/queries, and then merge this mini-index
into the global index before the next window of time is
processed. We present IDCAP’s approach to these
indexing challenges below.

A third challenge of designing a data model that
allows for the efficient storage and batch processing of
large amounts of data is not addressed in this paper.
We explain our approach to this third challenge in
detail in [7]. In this paper, we focus exclusively on the
work we performed to enable real-time analysis of
streaming social media data during times of crisis.
There are, of course, additional challenges beyond the
ones mentioned above; for instance, data intensive
software systems require well-designed user interfaces
to facilitate access to large data sets and to allow users
to search, filter, sort, query, and analyze that data [3, 6,
9]. While we encountered these challenges when
creating the IDCAP, we do not discuss them here.

3. The Software Architecture of the IDCAP

In this section, we present the design and

implementation of the IDCAP. Project EPIC’s existing
data collection software system—EPIC Collect—was
not designed to provide rich support for data analytics.
The design goal of the IDCAP is to address this
concern via the creation of a new data model,
discussed in [7], and a new set of software services that
implement the IDCAP. The IDCAP handles the
scalable and reliable storage of streaming Twitter data
(as EPIC Collect does now) but also provides the
ability to perform real-time data analysis on incoming
tweets as well as greatly improved and significantly
faster batch data analysis on previously collected
datasets. While we focus on Twitter data due to Project
EPIC’s needs, our techniques easily generalize to other
problem domains and types of data.

The software architecture of the IDCAP is
presented in Fig. 1. We make use of a layered software
architecture to discuss the high-level interactions of the
components that comprise the IDCAP. The diagram
groups technologies based on the role they play in the
overall design. The architecture consists of four layers:
application, service, index, and storage. Each layer is
discussed next in a bottom-up fashion.

IDCA-App
Application

Layer

Service
Layer

Index
Layer

Storage
Layer

RabbitMQ Redis

Apache Spark

Event_InformationEvent_Tweets

Event_Abstractions

Cassandra

DataStax Enterprise

Twitter
Streaming

API

Sqlite

Figure 1. The Software Architecture of IDCAP

5912

3.1. Storage Layer

The storage layer consists of both NoSQL and
relational database technologies; in the prototype
implementation of the IDCAP, we specifically make
use of Cassandra and Sqlite. Cassandra is used to store
Twitter data sets while Sqlite is used to store
information by IDCAPs front-end web app.

One of the requirements for conducting research in
crisis informatics is to make use of the right database
to achieve reliable and scalable data storage. To find
the database that meets Project EPIC’s needs, various
relational and NoSQL databases were explored
including MySQL, MongoDB, HBase, Solr/Lucene,
and Cassandra. Cassandra was selected for the IDCAP
because: (1) Cassandra automatically partitions data
across a cluster, eliminating issues encountered when
trying to scale relational databases, and (2) Cassandra
provides reliability via its support for replication [24].

The IDCAP makes use of Cassandra’s default
partitioning strategy, the Murmur3Partitioner. This
strategy was chosen to uniformly distribute data across
a cluster and to avoid the performance problems that
can be introduced by the use of Cassandra’s random
partitioning strategy. Moreover, to provide availability
and accessibility, the replication factor for the IDCAP
for our three-node cluster was set to three. This setting
tells Cassandra to ensure that each node has a complete
copy of the data stored in our datasets; this also ensures
that our cluster can respond to client requests even if
two of the three nodes are down.

Finding the right data model for a given problem
domain is critical to achieve fast and efficient queries
[6, 9]. The storage layer of the IDCAP contains the
Event_Tweets and Event_Information column
families; these column families are discussed in detail
in [7]. For the purposes of this paper, it is sufficient to
know that Event_Tweets stores tweets in a scalable
fashion, storing large Twitter datasets by dividing the
tweets into rows of twenty thousand tweets each. This
allows the row size in the column family to stay near
100 MB, which is the size that Cassandra recommends
for best performance for retrieving rows efficiently.
Our rows make use of Twitter’s integer tweet id as
column names to ensure that tweets are sorted
automatically by creation date in ascending order.
Event_Information maintains metadata about each
collected crisis event and provides summary
information about events stored in Event_Tweets. For
instance, it is possible to get a list of all keywords used
to collect data for a given event in a single call. These
two column families serve as the foundation for the
index layer which allows the IDCAP to provide real-
time analytics over the collected datasets.

3.2. Index Layer

Creating a proper mechanism to incrementally
index large data sets while collecting data in real-time
is an important and challenging task. A well-designed
indexing mechanism plays a key role in enabling real-
time analytics and provides benefits to the analysis of
large data sets via batch processing as well.

The index layer provides an indexing schema on
top of Project EPIC’s large datasets via a novel design
of the Event_Abstraction column family; this column
family is explained in detail in [7] and is “designed for
analytics.” It provides indexes and high level
abstractions for Twitter datasets that are stored in
Event_Tweets and it was designed based on the
domain attributes that are of highest interest to Project
EPIC analysts including event names, data collection
dates, tweet collection keywords, and unique tweet ids.
In all cases, the Event_Abstraction column family
allows queries based on these attributes to be
performed efficiently; it does this by storing the tweet
ids that match or contain a particular attribute of
interest. For instance, if an analyst wants to locate all
tweets that contain the keyword hurricane, the IDCAP
looks up a particular row and column in
Event_Abstractions that returns a hashtable that
contains keyword/tweet id associations. Retrieving the
value associated with hurricane in this hashtable,
provides a set of row_key/column references that
indicate which tweets in Event_Tweets contain that
keyword. Using this system, any query that simply
needs to return a count of matching tweets can do so
immediately by counting the number of tweet
references stored for the attribute of interest.
Otherwise, the query completes by fetching the
indicated tweets stored in Event_Tweets and returning
them to the caller. With this new design, Project EPIC
analysts will be able to filter, search, sample, sort, and
perform exploratory analytics efficiently on large
Twitter datasets using IDCAP. This analysis is
currently supported in the IDCAPs front-end web
app—the IDCA App—and will eventually be
integrated into a future version of EPIC Analyze [3].
The IDCA App is discussed in Section 4.

3.3. Service Layer

The service layer of the IDCAP consists of
DataStax Enterprise (DSE), RabbitMQ, and Redis.
Each technology and its purpose within the IDCAP is
discussed next. This layer is the extension point for
integrating new technologies into the IDCAP to
implement new functionality.

5913

The IDCAP make use of DSE since it provides a
collection of open source Apache technologies that
have been integrated to work with Cassandra; for
instance, Spark and Pig have been modified to read
from and write to Cassandra column families instead of
the Hadoop Distributed File System (HDFS).
Moreover, DSE’s integrations allow multiple
technologies to work together including Pig, Spark,
and Solr. For the prototype implementation of the
IDCAP, a three node DSE Cluster was configured and
deployed in an OpenStack environment (see Fig. 2).

In the IDCAP’s DSE cluster, DSE 4.7.3 is used;
this version is deployed with Cassandra 2.1 and Spark
1.2.2. Each DSE node is configured as an OpenStack
virtual machine that makes use of the CentOS
operating system. Each OpenStack instance was
configured to have its own extended volume to store
data; each such volume was created to avoid data loss
in the case of operating system crashes, problems with
the OpenStack software, or hardware-related crashes.

3.3.1. Apache Spark & Spark Streaming. Spark
is a fast and general purpose distributed computing
platform. Spark provides a straightforward way to
parallelize computations across a cluster; its API hides
the complexity of distributed systems programming,
network communication, and fault tolerance. Spark
extends the MapReduce model in order to support
more types of computations including interactive
queries and stream processing. The Spark technology
stack consists of Spark Core, Spark Streaming, Spark
SQL, MLlib, and GraphX. Spark Core provides the
functionalities of task scheduling, memory
management, fault recovery, and interacting with
storage systems. Spark Streaming allows RDDs to be
created from streaming data sources. Spark internally
creates streams that consist of a series of RDDs
(Spark’s primary data structure) and provides an API
to transform/process each RDD that consists of data
received from the source of streaming data.

DSE Spark
Streaming

Twitter
Streaming

API
Rdd1, Rdd2, ... DSE Spark

Engine

DStreams

RabbitMQ

Figure 3. DSE Spark Streaming

In the IDCAP, the Spark streaming component is
used to stream public tweets from Twitter (see Fig. 3).
Our spark streaming script is written in Python and
makes use of the Pyspark module. The streaming script

performs its task via the following steps: 1) create a
unique set of event keywords by getting the active
event keywords stored in Redis (see Table. I; this
information is managed by the IDCA App, discussed in
Section 4); 2) creating a spark streaming context; 3)
submitting keywords to the Twitter Streaming API via
a POST HTTP request; 4) collecting RDDs that
contain multiple Tweet JSON objects to the Spark
master; 5) filtering out any responses that are not
tweets; 6) classifying each of the remaining tweets
based on the event keywords to associate a particular
tweet with one or more data collection events; 7)
creating RabbitMQ messages for each classified tweet;
8) inserting the messages created in step 7 into
RabbitMQ queues (discussed below); 9) and repeating
steps 3 through 8 until a stop request is received.

We carefully configured our DSE Spark cluster and
extensively tested the implementation of our streaming
script to provide reliable, robust, efficient, and 24/7
Twitter data collection. In particular, we configured
some of the following parameters to help achieve the
performance exhibited by the IDCAP prototype: 1)
setting the batch interval time to 2 seconds; 2) setting
the spark.streaming.unpersist property to automatically
delete a persisted stream from memory when they are
not used anymore; this setting is needed since Spark
streams are persisted in memory by default; and 3)
setting spark.cleaner.ttl property to 300 seconds to
periodically clean memory since the default is infinite
which is not conducive to 24/7 data collection.

3.3.2. RabbitMQ. RabbitMQ is an open source
message queuing service that provides reliable,
durable, and persistent message queues. It provides an
API that allows multiple clients concurrently to insert
messages into queues and retrieve messages from
queues. The IDCAP makes use of RabbitMQ to
provide a set of durable and persistent queues that are
used to receive tweets from the Twitter Streaming API
via the work of the spark streaming script discussed
above. For each event collected, the spark streaming
script will create one queue in RabbitMQ. These
queues are used to temporarily store incoming tweets
before they are permanently stored in Cassandra by the
IDCAP persistence script (discussed below). These
queues thus serve as a buffer in a producer-consumer
relationship between the streaming script and the
persistence script allowing the two to work
independently of each other and to shield each other
from errors that might occur in the other.

3.3.2. Redis. Redis is a key-value in-memory
database; it provides a rich API over a well-known set
of data structures such as sets, lists, and dictionaries.
Redis stores data in memory by default; on the other
hand, Redis can also persist data permanently onto disk
as well by configuring its appendonly attribute

DSE Cluster

Cassandra
Master Node

Cassandra
Node 2

Cassandra
Node 3

Spark Master

Spark WorkerSpark Worker

Figure 2. DSE Cluster (Cassandra + Spark)

5914

appropriately and specifying a location to store data on
disk. The IDCAP makes use of Redis to enable a wide
range of its analytics capabilities including the ability
to answer big picture questions about data sets under
active collection, to allow it to incrementally index
data as it arrives, and to support customizable queries
on that indexed data in real-time. To provide reliable,
accessible, and efficient real-time analytics and
incremental analytics at interactive speeds, two sets of
Redis data structures are created. The first set of Redis
data structures is used to keep track of the current state
of all data collection events as well as the status of the
streaming and persistence scripts. The names of each
data structure is listed in Table 1 along with a brief
description of what information is stored in each one.
These values are updated by the IDCA App.

Table 1. “Big Picture” Redis data structures

app_status_hset Tracks the status of the
streaming and persisting
scripts

active_collection_set Provides a unique set of
active event names

closed_events_set Provides a unique set of
closed event names

streaming_pid_set Stores the process id of the
active spark streaming
script

persisting_pid_set Stores the process id of the
active persisting script

event_name:summary
_hset

Tracks the global state of an
event

event_name:active
_keywords_hset

Provides a map of active
keywords and creation date

event_name:closed
_keywords_hset

Provides a map of closed
keywords and closing date

twitter_other
_ messages_set

Stores Twitter compliance
messages received while
streaming

For instance, app_status_hset is used by the IDCA
App to orchestrate the streaming and persisting scripts.
Creating a new event in the IDCA App triggers
event_name:summary_hset to be created and the active
collection set to be updated. Adding new keyword(s) to
an event by the IDCA App triggers an update in
event_name:active_keywords_hset and closing an
event’s keyword(s) triggers an update in both the
event_name:active_keywords_hset and
event_name:closed_keywords_hset. Closing an active
event triggers the event name to be deleted from the
active collection set and added into the closed events
set. Moreover, the streaming_pid_set contains the
active running process id of the spark streaming script
while the persisting_pid_set contains the process id of

the running persisting script; both structures are used
with the purpose of eliminating zombie processes.

Additionally, the event_name:summary_hset
provides the following information for a data collection
event: the status (active or closed), the creation date,
the current active row in the Event_Tweets column
family for this event, the total tweet count, and the
current row tweet count.
Table 2. Event-Specific Redis data structures

event_name:tids_set:JD Keeps a unique set of
tweet ids

event_name:current_
row_julian_date_set

Provides a unique set of
Julian dates for the
current window (active
row)

event_name:current
_ row_kw_set

Stores a unique set of
keywords for the current
window

event_name:analytics
_tweets_hset

Provides a map of tweet
id and tweet JSON for
current window

event_name:ei:kw_ set Provides a unique set of
event keywords for
Event_Information

event_name:ei:jd_ set
Provides a unique set of
tweet collection dates in
Julian date format for
Event_Information

event_name:ei:
et_ rowkeys_set

Provides a unique set of
Event_Tweets row keys
for Event_Information

event_name:ea: geo_
set:JD

Stores indexes of geo-
tagged tweets for
Event_Abstractions

event_name:ea:index_
set:JD

Stores indexes of all
tweets by day for
Event_Abstractions

event_name:ea:
KW_set:JD

Provides keyword day
indexes for
Event_Abstractions

The second set of Redis data structures listed in
Table 2 are created for each active event to keep track
of each event’s information, such as keywords,
collection dates, indexes, and the JSON objects of
collected tweets. These data structures and
event_name:summary_hset are incrementally updated
by our persistence script. This script concurrently
consumes messages from the multiple queues created
by the streaming script.

The event_name:tids_set:JD tracks the unique ids
of tweets seen in the current collection window for the
given event name. The event_name:ea:KW_set:JD
data structure represents multiple sets based on

5915

multiple events keywords (KW) and tweet collection
dates (JD). For example, assume a test event collects
on two keywords colorado and boulder on two days—
2016001 and 2016002—for the current collection
window. Then, four sets are created to keep track of
the tweets collected on those days for those keywords:
test:ea:colorado_set:2016001, test:ea:colorado_set:2016002,
test:ea:boulder_set:2016001, test:ea:boulder_set:2016002.

As new tweets come in on 2016002 (the second day
of the year 2016), they will be assigned to the correct
set by the persistence script. To efficiently make use of
the Redis data structures, defining the right window
size is critical. This value determines the amount of
data that will be stored in Redis (and therefore in
memory) for each event. The window size has a direct
impact on the goal of providing analytics in near real-
time at interactive speeds. The window size we
selected is the last 20 thousand tweets received from
Twitter, which corresponds to the length that was
selected for the size of rows in the Event_Tweets
column family. This decision means that we are never
asking the persistence script to insert more tweets into
Cassandra than its maximum recommended row size.

The persistence script first pulls tweets from
RabbitMQ and places them in Redis and then when the
window size is reached, flushes the tweets captured for
the current window into the Event_Tweets,
Event_Abstraction, and Event_Information column
families. Given the above information, the high-level
responsibilities of the persistence script are now clear.
For each active event, it subscribes to the
corresponding queue in RabbitMQ; it gets notified by
RabbitMQ when a tweet has arrived in the queue; it
dequeues the tweet, checks to see if the tweet is unique
(by consulting with the event_name:tids_set of the
current Julian day in Redis); it stores all unique tweets
into a batch until 256 tweets are in the batch and then
stores them into the current row of Event_Tweets for
that event; it then updates the Redis data structures
related to Event_Information and Event_Abstractions,
so they are ready to respond to queries; it then loops
and performs these steps again until the window size of
20 thousands tweets total has been reached, it then
flushes the Event_Information and Event_Abstractions
information to Cassandra. It continues to do this until it
is told to shutdown by the IDCA App.

When an active event is closed, first, the IDCA
App updates the events data structures listed in Table
1; then the persistence script consumes all possible
tweets of the event stored in RabbitMQ, updates all
event-related data structures listed in Table 2, performs
a final update of the Event_Information and
Event_Abstractions indexes, and then deletes the
event’s Redis-related data structures to release
resources (i.e. memory) for future events.

4. IDCA App

The IDCA App—a Ruby on Rails web
application—was developed to orchestrate the IDCAP
and its resources. The IDCA App provides a user-
friendly UI that allows analysts to focus on their
analysis tasks without having to worry about the
complex orchestration of IDCAP components going on
in the background. The IDCA App sits on top of the
IDCAP architecture and provides the following
features: a) it allows analysts to efficiently
create/update/close events and their keywords, b) it
orchestrates the streaming and persistence scripts, c) it
allows analysts to monitor streaming tweets in real-
time, and d) it displays event metrics to analysts by
providing customizable queries on the streaming data
at interactive speeds. The IDCA App provides this
functionality via three tabs: Process & Event Manager,
Real-Time Monitoring, and Incremental Analytics.

The Process & Event Manager allows analysts to
manage events. Creating a new event triggers the
creation of the event_name:summary_hset data
structure in Redis. Adding keywords to an event
updates the related Redis data structures listed in Table
1. Furthermore, the IDCA App provides a process
manager to manage the streaming and persistence
scripts discussed in Section 3.

When an analyst makes a change to an event, the
streaming script needs to be stopped and then restarted.
Currently, this is done manually via a button. When
this button is clicked, the spark streaming process is
gracefully disconnected from Twitter and then stopped
after all existing Twitter data has been deposited into
the relevant RabbitMQ message queues. The user can
then click on the Resume Streaming button to have the
streaming script started again; it will then reconnect to
Twitter using the updated event information and
resume collecting data once again.

The Real-Time Monitoring tab allows active events
to be monitored in near real-time. The values presented
in this tab’s charts are calculated by indexes stored in
Redis for the current window of each event.

As shown in Fig. 4, three columns of information
are provided for each active event. The first column
shows the tweet count of the event and the day
distribution of the active row (a row of 20K tweets can
easily contain tweets from multiple days) and it
provides tweet distribution percentage by days that
exist in the active row. Also, this column provides the
number of columns left in the active row (i.e. the space
for tweets before this row is full). As shown in Fig. 4,
the active row of the 2016 Test Earthquake event is
2016 Test Earthquake:6 and it contains 14,856 tweets.

5916

This row contains tweets that were collected on the
following days: 2016120, 2016121 and 2016122. Also,
25.7 percent of columns are left before this row is
considered full and a new active row is created.

The second column shows keyword distribution of
tweets that are collected on the last day of the event in
real-time. As shown in Fig. 4, 2,424 tweets have been
collected on the last current day (2016122) of the 2016
Test Earthquake event and the tweet distribution chart
is based on seven keywords. The last column displays
maps of the geo-tagged tweets that exist in the events
active row. As shown in Fig. 4, the 2016 Test
Earthquake event contains 33 geo-tagged tweets stored
in the 2016 Test Earthquake:6 row of Event_Tweets.

The Incremental Analytics tab provides analysts
with a user interface to incrementally process queries
on the entire set of tweets for an event including all
tweets stored for the event in Cassandra as well as all
tweets stored in Redis for the current window of real-
time data collection. The logic of IDCAP’s support for
incremental analytics applies a query on both the
tweets in the current window (via real-time
calculations) and the previously collected tweets of an
event (via batch processing). After completing a query
request, the results of both the real-time analysis and
the batch processing are shown in a unified view.

In the Incremental Analytics tab, the first step is to

choose an event from a list of all active events; this list
is populated by the IDCA App interactively. It allows
queries to be made using keywords, geolocation status,
or on all tweets. In Fig. 5, we show the results of
making a query on the 2016 Zika Virus event for the
keyword #ZikaVirus. Here, the IDCA App performed
an incremental query on that event to display the
number of tweets that contained #ZikaVirus for all
tweets collected for that event (in this case 55,514 total
tweets over the course of 17 days of collection).

As shown in Fig. 5, both batch and real-time query
execution times are provided. The batch results are
shown on the left side with blue column bars and its
results were calculated by making use of indexes
stored in Event_Abstractions within 0.178 seconds. On
the right side, the real-time results are shown with red
column bars. For example, 299 tweets tweeted on the
day of 2016127 contain the #ZikaVirus keyword. The
real-time results are processed in 0.002 seconds by
making use of the Redis data structures that store the
tweets for the current collection window. In this case,
multiple days are shown in the results because the
current window contains tweets from multiple days.
Note: the batch processing speed is fast due to the
work performed in designing the Event_Abstractions
column family. Even if this event had millions of
tweets, performance would be similar.

Figure 4. Real-Time Monitoring

Figure 5. #ZikaVirus results

5917

5. Evaluation

An example of the IDCAP’s support for real-time
tweet monitoring and incremental analytics are
provided in Section 4. These features are not supported
at all by Project EPIC’s previous systems. In this
section, the exploratory batch data processing
capability of the IDCAP is evaluated with respect to
EPIC Analyze (which makes use of Apache Solr for
most of its capabilities) and EPIC Collect. The IDCAP,
EPIC Collect, and Apache Solr each provide their own
indexing mechanism and their batch data processing
steps were explained in detail in [7].

To evaluate the three systems, three Project EPIC
datasets (see Fig. 6) were selected; each dataset was
indexed in the three systems. To evaluate these
systems, the following query was used: calculate the
user tweet count distribution of all tweets for a
particular event. That is, for a given event, find all
unique users in the event and then calculate how many
tweets each user contributed to the event. This query
was selected because it cannot be directly answered by
any of these systems using their indexes. Therefore, to
answer this question, each system must perform more
work than simply looking up answers in pre-computed
indexes. This query was performed on each system.
The time spent to perform the query was recorded.
Each query was performed five times using the same
set of test machines and the average time across five
runs is provided in Fig. 6.

EPIC Analyze makes use of Apache Solr to answer
analyst queries at interactive speeds since EPIC
Analyze only ever displays 50 query results at any one
time due to a carefully-designed pagination mechanism
[3]. Therefore, retrieving small chunks of query results
by Apache Solr does not slow down analysis tasks.
However, when it comes time to read all of the tweets
of one of Project EPICs large datasets to create a hash
map of users that tracks their contribution to that

dataset, the IDCAP performs significantly faster than
EPIC Collect and Apache Solr (see Fig. 6). According
to the results, the IDCAP is at least 2.93 times and at
most 5.58 times faster than EPIC Collect; and at least
10.54 times and at most 17.86 times faster than Apache
Solr.

These significant results are achieved via the design
of our column familes. Event_Tweets efficiently stores
billions of tweets in sorted order with no duplication
while respecting Cassandra’s recommended row size
of 100 MB. Event_Information provides a big picture
view of an event in constant time; with a single API
call, one can retrieve all of an event’s row keys in
Event_Tweets, its keywords, the days of its collection,
and detailed information on the status of the event.
Before the use of this table, our infrastructure required
us to generate all possible row keys for an event to see
which ones were actually generated and used for an
event. This process could take many minutes for large
events; now, all row keys used are stored in
Event_Information and retrieved in constant time [7].

Event_Abstractions serves as an index into the
tweets stored in Event_Tweets. Its design is generic
enough for many different indexes to be created and
accessed. For instance, all geo-located tweets for an
event can be retrieved in a single API call on
Event_Abstractions. This was not possible in our
previous infrastructure; one had to access tweets by
keywords and date of collection and then filter down to
those that were geolocated. All of these design
decisions combine to produce an overall system that is
orders of magnitude faster than our previous systems.

6. Related Work

Our work builds on the work that was invested in
the original research to design, develop, and deploy
EPIC Collect [1, 2, 24] and EPIC Analyze [3]. This
work was a significant achievement at the time,
providing new insights into the software architectures

0

50000

100000

150000

200000

2012 Casa Grande Explosion (183K) 2013 Winter Storm Nemo (4.2M) 2013 Typhoon Phillipines (11.8M)

196061

41492

1553

32166
21966

386
10975

3934106

Pr
oc

es
sin

g T
im

e (
se

cs
)

Project EPIC Datasets

IDCAP
EPIC Collect
Apache Solr

Figure 6. Query Execution Results (secs)

5918

required to make data-intensive software systems
reliable and scalable and tackling the initial thorny
work that was required to identify a data model that
supports those characteristics for the reliable collection
of large Twitter datasets. We now discuss related work.

In [19], a software architecture for collecting and
analyzing geospatial and semantic information from
Twitter data was described. The tweets were consumed
by a Twitter4j Java application and then transferred
into a PostgreSQL database using the PostGIS spatial
extension. Wordnet and Solr were used to relate tweets
together if those tweets share the same meaning. The
tweets are then made available by a Django web
application, using GeoDjango for geospatial queries
and the Haystack API for semantic queries. The goal of
this infrastructure was to search for tweets via semantic
keywords and coordinates, and export the results via a
map or CSV file. The focus of [19] is on a particular
domain-independent analysis technique and not with
supporting the entire analysis life cycle for crisis
informatics research. In contrast to their work, we store
the entire JSON object of collected tweets in Cassandra
in a way that allows us to answer all deep queries
related to the entire tweet object.

In [5], a software architecture for the analysis of
cloud-based data streams is proposed. The proposed
architecture’s aim is to support system management of
large enterprise data centers for cloud based
infrastructures and to analyze the data collected to
glean useful information about the state of the system.
Our work shares the same goal of storing, processing,
and analyzing large amounts of information but the
type of information is different. In [5], the work
focuses on system monitoring by keeping system
related information stored in HDFS and HBase clusters
and analyzing them using MapReduce jobs generated
by programs written using Apache Pig. We focus
instead on crisis data sets. We do, however, make use
of similar techniques; for instance, our work on ISM
[6] sorts tweets using MapReduce jobs generated by
the DataStax Enterprise version of Apache Pig which
can read/write data stored in Cassandra.

In [11], an Emergency Situation Awareness-
Automated Web Text Mining (ESA-AWTM) platform
was presented; it is designed for crisis coordinators in
Australia. The goal of this system is to identify
situational awareness information from tweets
generated during the response phase of crisis events.
The ESA-AWTM platform’s interface allows users to
monitor and refresh alerts related to queries of interest.
The Burst Detector/Alert Monitor interface provides
stylized words to visualize incident status based on
statistical models. The Cluster visualizer summarizes
situational awareness information from streamed
tweets by using the Carrot Clustering engine and Solr.

Support Vector Machines are trained to detect high-
value messages such as infrastructure damage. We
share the same goals of designing systems for
emergencies. We would like to provide the types of
queries provided by ESA-AWTM in our future work.

7. Conclusions

In this paper, we reported on a novel software
infrastructure called the Incremental Data Collection
and Analytics Platform. We have shown how various
data analytics frameworks such as Cassandra, Spark,
Redis, and RabbitMQ can be efficiently deployed
together in support of real-time data collection and
analytics. The IDCAP can incrementally index
streaming data in real-time and perform real-time data
analytics on the current collection window at
interactive speeds. Furthermore, the IDCA App was
developed to efficiently make use of the IDCAP. The
IDCA App provides a user interface for analysts to
orchestrate the IDCAP to stream, persist, and monitor
tweets in real-time. The IDCA App provides
incremental analytics that allows analysts to perform
their queries in real-time at interactive speeds without
worrying about big data collection and analytics related
challenges.

To conclude, developing the IDCAP requires
software engineering skills to trade one class of
technology for another, and it involves determining the
proper architectural style that supports data analytics
using both real-time and batch processing techniques.
Although the IDCAP was applied to Twitter datasets
and the domain of crisis informatics, our design
techniques can be applied to other application domains
and datasets to provide scalable and incremental
storage and analytics more broadly. Therefore, this
work represents a contribution to software engineering
with respect to software architecture design and
technology trade-offs and a prototype infrastructure for
transitioning from batch data processing to real-time
data collection that other software engineering
researchers can use in their own work when making
use of columnar NoSQL data stores.

References

[1] Anderson, K. M., and Schram, A. Design and
implementation of a data analytics infrastructure in support
of crisis informatics research (nier track). In 33rd
International Conference on Software Engineering, May
2011, pp. 844–847.

[2] Anderson, K. M., Schram, A., Alzabarah, A., and Palen,
L. Architectural implications of social media analytics in
support of crisis informatics research. IEEE Bulletin of the
Technical Committee on Data Engineering, vol. 36, no. 3, pp.

5919

13–20, September 2013.

[3] Anderson, K. M., Aydin, A. A., Barrenechea, M.,
Cardenas, A., Hakeem, M., and Jambi, S. Design
challenges/solutions for environments supporting the analysis
of social media data in crisis informatics research. In 48th
Hawaii International Conference on System Sciences,
January 2015, pp. 163–172.

[4] Anderson, K. M. Embrace the challenges: Software
engineering in a big data world. In First International
Workshop on Big Data Software Engineering, Part of the
2015 International Conference on Software Engineering,
May 2015, pp. 19–25.

[5] Andreolini, M., Colajanni, M., and Tosi, S. A software
architecture for the analysis of large sets of data streams in
cloud infrastructures. In 11th International Conference on
Computer and Information Technology, pp. 389–394, 2011.

[6] Aydin, A. A., and Anderson, K. M. Incremental sorting
for large dynamic data sets. In First International Conference
on Big Data Computing Service and Applications, pp. 170–
175, March+April 2015.

[7] Aydin, A. A. Incremental data collection & analytics the
design of next-generation crisis informatics software. Ph.D.
dissertation, University of Colorado, 106 pages, 2016.

[8] Barlow, M. Real-Time Big Data Analytics: Emerging
Architecture. O’Reilly, 2013.

[9] Barrenechea, M., Anderson, K. M., Aydin, A. A.,
Hakeem, M., and Jambi, S. Getting the query right: User
interface design of analysis platforms for crisis research. In
2015 International Conference on Web Engineering, pp.
547–564, June 2015.

[10] Bosch, J. Software architecture: The next step. In Proc.
Software Architecture: First European Workshop, EWSA
2004, pp. 194–199, 2004.

[11] Cameron, M. A., Power, R., Robinson, B., and Yin, J.
Emergency situation awareness from twitter for crisis
management. In Proc. of the 21st International Conference on
World Wide Web Companion, pp. 695–698, 2012.

[12] Garlan, D., and Shaw, M. An introduction to software
architecture. Tech. Rep., 1994.

[13] Garlan, D. Software architecture: A roadmap. In Proc. of
the Conference on The Future of Software Engineering, pp.
91–101, 2000.

[14] Han, L., Potter, S., Beckett, G., Pringle, G., Welch, S.,
Koo, S.-H., Wickler, G., Usmani, A., Torero, J. L., and Tate
A. Firegrid: An e-infrastructure for next-generation

emergency response support. J. Parallel Distrib. Comput.,
vol. 70, no. 11, pp. 1128–1141, November 2010.

[15] Hang, Y. and Fong, S. Real-time business intelligence
system architecture with stream mining. In Digital
Information Management (ICDIM), 2010 Fifth International
Conference on, July 2010, pp. 29–34.

[16] Hinsman, C., Sangal, N., and Stafford, J. Achieving
agility through architecture visibility. Architectures for
Adaptive Software Systems. pp. 116–129, 2009.

[17] Jarr, S. Fast Data and The New Enterprise Data
Architecture. O’Reilly, 2015.

[18] Mattsson, M., Grahn, H., and Mårtensson, F. Software
architecture evaluation methods for performance,
maintainability, testability, and portability. Second
International Conference on the Quality of Software
Architectures, 2006.

[19] Oussalah, M., Bhat, F., Challis, K., and Schnier, T. A
software architecture for twitter collection, search and
geolocation services. Knowledge-Based Systems, vol. 37, pp.
105–120, January 2013.

[20] Palen, L., Martin, J., Anderson, K. M., and Sicker, D.
Widescale computer-mediated communication in crisis re-
sponse: Roles, trust & accuracy in the social distribution of
information. 2009, http://www.nsf.gov/awardsearch/
showAward.do?AwardNumber=0910586.

[21] Palen, L., Anderson, K. M., Mark, G., Martin, J., Sicker,
D., Palmer, M., and Grunwald, D. A vision for technology-
mediated support for public participation & assistance in
mass emergencies & disasters. In ACM-BCS Visions of
Computer Science, April 2010, Article 8. 12 pages.

[22] Palen, L., Vieweg, S., and Anderson, K. M. Supporting
‘everyday analysts’ in safety- and time-critical situations.
The Information Society, vol. 27, no. 1, pp. 52–62, January
2011.

[23] Perry, D. E., and Wolf, A. L. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes, vol.
17, no. 4, pp. 40–52, October 1992.

[24] Schram, A., and Anderson, K. M. MySQL to NoSQL:
Data modeling challenges in supporting scalability. In ACM
Conference on Systems, Programming, Languages and
Applications: Software for Humanity, October 2012, pp.
191–202.

5920

