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Abstract 
Real-time data collection and analytics is a 

desirable but challenging feature to provide in data-
intensive software systems. To provide highly 
concurrent and efficient real-time analytics on 
streaming data at interactive speeds requires a well-
designed software architecture that makes use of a 
carefully selected set of software frameworks. In this 
paper, we report on the design and implementation of 
the Incremental Data Collection & Analytics Platform 
(IDCAP). The IDCAP provides incremental data 
collection and indexing in real-time of social media 
data; support for real-time analytics at interactive 
speeds; highly concurrent batch data processing 
supported by a novel data model; and a front-end web 
client that allows an analyst to manage IDCAP 
resources, to monitor incoming data in real-time, and 
to provide an interface that allows incremental queries 
to be performed on top of large Twitter datasets. 

 
 

1. Introduction 
 

Every day, large amounts of data are generated by a 
variety of computational systems. It is important for an 
organization to have tools that can manage these large 
data sets while also providing real-time analytics on 
streaming data. Thus, organizations must struggle with 
the design of data-intensive software systems [15, 17]. 

We are a team of software engineering researchers 
working on Project EPIC at the University of Colorado 
[20] on a research area known as crisis informatics. 
Project EPIC studies how members of the public make 
use of social media during times of crisis [21, 22]; 
crisis informatics software collects and analyzes the 
information generated on social media during times of 
mass emergency. To conduct research in crisis 
informatics, we have been collecting and analyzing 
large Twitter data sets since Fall 2009. We face 
significant challenges storing billions of tweets and 
processing them such that they can be efficiently 
browsed, annotated, and analyzed [4]. 

We have previously reported on EPIC Collect [1, 2, 
24], Project EPIC’s Twitter data collection 

infrastructure, and the design challenges we faced in 
producing a production software system within a 
collaborative, multidisciplinary research project. We 
have also reported on EPIC Analyze [3], the data 
analysis environment we built to allow Project EPIC 
analysts to browse, search, sample, filter, sort, and 
annotate large Twitter data sets. EPIC Analyze is 
focused on the batch processing of crisis data after a 
crisis event is over. Now, we need to collect and 
analyze crisis data in real-time during a crisis event. 

In this paper, we report on the Incremental Data 
Collection & Analytics Platform (IDCAP); it is a new 
data analytics platform that addresses certain 
limitations of EPIC Collect and EPIC Analyze that 
prevented them from providing real-time analytics over 
Project EPIC’s datasets. The IDCAP thus provides a 
way to transition Project EPIC from batch-oriented 
style data processing to real-time data collection and 
analytics. The IDCAP is a robust, reliable, fault 
tolerant and 24/7 available data collection and analytics 
platform. The IDCAP collects tweets via the Twitter 
Streaming API and stores tweets in Cassandra in an 
incremental and scalable fashion; it is able to provide 
greatly improved and significantly faster batch data 
analysis on previously collected Twitter data sets while 
also providing real-time analytics on streaming crisis 
data. Furthermore, the IDCAP is an example of a data-
intensive software system that provides insight into the 
types of techniques and technologies that must be 
combined to implement such systems and ensure that 
they are scalable, reliable, and efficient [7]. 

This paper is organized as follows. In Section 2, we 
discuss the design challenges of data intensive software 
systems. In Section 3, we discuss the design of the 
IDCAP and discuss its front-end application, the IDCA 
App, in Section 4. In Section 5, we present our 
evaluation and then discuss related work in Section 6. 
In Section 7, we conclude with our contributions. 
 
2. Design Challenges  
 

The design of data intensive software systems 
introduces many challenges. The primary challenges 
are 1) identifying a proper software architectural 
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design for the system to handle the velocity of 
streaming data in a 24/7, reliable, fault tolerant, and 
scalable fashion [14, 19]; 2) incrementally indexing 
data streams in real-time to provide real-time data 
analysis and creating an indexing schema for later 
batch analytics; and 3) handling the volume of data by 
permanently storing incrementally indexed data in a 
scalable fashion in a persistent store to support batch 
data processing and analysis [4]. 

The design of software architecture is paramount 
[12, 23] because it explicitly impacts not only 
operational properties such as performance, reliability, 
and availability, but also quality attributes of a system 
such as changeability, reusability, and maintainability 
[13, 18]. The software architecture of a system 
provides a view of a system’s components, the way 
those components interact, and their responsibilities 
[10, 16]. Therefore, using the right set of technologies 
allows one to meet the design goals of the system and 
provides efficient generation of metrics and statistics 
and fast exploratory analysis on large datasets [3]. The 
rise of big data has triggered the demand for a scalable 
data analytics software architecture and a flexible data 
processing infrastructure to handle diverse and various 
analysis requests in real-time and later in the batch 
processing of large amounts of data. In our own 
research, finding a unifying software architecture that 
contains the right set of components and data models to 
achieve these goals has taken years of experimentation 
and iterative design. The IDCAP is our most recent 
attempt at achieving this goal; it outperforms our 
previous efforts significantly. 

With respect to indexing, capturing data in real-
time in a scalable and highly concurrent fashion 
without losing any information is a challenging task 
[8]. There are two difficult challenges related to 
indexing data streams in real-time. The first is what 
data structure can be used to store data such that a 
global index is created that is capable of answering the 

types of questions that analysts ask. This structure must 
be one that allows for efficient queries but also 
efficient inserts of new information into the index to 
allow for real-time data analysis. The second challenge 
is how can such an index be generated in an 
incremental fashion? Most techniques that operate in 
real-time divide the streaming data into short windows 
of time. The challenge then is to generate a mini-index 
of all tweets received in the last window, update all 
active metrics/queries, and then merge this mini-index 
into the global index before the next window of time is 
processed. We present IDCAP’s approach to these 
indexing challenges below. 

A third challenge of designing a data model that 
allows for the efficient storage and batch processing of 
large amounts of data is not addressed in this paper. 
We explain our approach to this third challenge in 
detail in [7]. In this paper, we focus exclusively on the 
work we performed to enable real-time analysis of 
streaming social media data during times of crisis. 
There are, of course, additional challenges beyond the 
ones mentioned above; for instance, data intensive 
software systems require well-designed user interfaces 
to facilitate access to large data sets and to allow users 
to search, filter, sort, query, and analyze that data [3, 6, 
9]. While we encountered these challenges when 
creating the IDCAP, we do not discuss them here. 

 
3. The Software Architecture of the IDCAP 

 
In this section, we present the design and 

implementation of the IDCAP. Project EPIC’s existing 
data collection software system—EPIC Collect—was 
not designed to provide rich support for data analytics. 
The design goal of the IDCAP is to address this 
concern via the creation of a new data model, 
discussed in [7], and a new set of software services that 
implement the IDCAP. The IDCAP handles the 
scalable and reliable storage of streaming Twitter data 
(as EPIC Collect does now) but also provides the 
ability to perform real-time data analysis on incoming 
tweets as well as greatly improved and significantly 
faster batch data analysis on previously collected 
datasets. While we focus on Twitter data due to Project 
EPIC’s needs, our techniques easily generalize to other 
problem domains and types of data. 

The software architecture of the IDCAP is 
presented in Fig. 1. We make use of a layered software 
architecture to discuss the high-level interactions of the 
components that comprise the IDCAP. The diagram 
groups technologies based on the role they play in the 
overall design. The architecture consists of four layers: 
application, service, index, and storage. Each layer is 
discussed next in a bottom-up fashion. 

IDCA-App
Application 

Layer

Service 
Layer

Index 
Layer

Storage 
Layer

RabbitMQ Redis

Apache Spark

Event_InformationEvent_Tweets

Event_Abstractions

Cassandra

DataStax Enterprise

Twitter 
Streaming 

API

Sqlite

 
Figure 1. The Software Architecture of IDCAP 
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3.1. Storage Layer 
 

The storage layer consists of both NoSQL and 
relational database technologies; in the prototype 
implementation of the IDCAP, we specifically make 
use of Cassandra and Sqlite. Cassandra is used to store 
Twitter data sets while Sqlite is used to store 
information by IDCAPs front-end web app. 

One of the requirements for conducting research in 
crisis informatics is to make use of the right database 
to achieve reliable and scalable data storage. To find 
the database that meets Project EPIC’s needs, various 
relational and NoSQL databases were explored 
including MySQL, MongoDB, HBase, Solr/Lucene, 
and Cassandra. Cassandra was selected for the IDCAP 
because: (1) Cassandra automatically partitions data 
across a cluster, eliminating issues encountered when 
trying to scale relational databases, and (2) Cassandra 
provides reliability via its support for replication [24]. 

The IDCAP makes use of Cassandra’s default 
partitioning strategy, the Murmur3Partitioner. This 
strategy was chosen to uniformly distribute data across 
a cluster and to avoid the performance problems that 
can be introduced by the use of Cassandra’s random 
partitioning strategy. Moreover, to provide availability 
and accessibility, the replication factor for the IDCAP 
for our three-node cluster was set to three. This setting 
tells Cassandra to ensure that each node has a complete 
copy of the data stored in our datasets; this also ensures 
that our cluster can respond to client requests even if 
two of the three nodes are down. 

Finding the right data model for a given problem 
domain is critical to achieve fast and efficient queries 
[6, 9]. The storage layer of the IDCAP contains the 
Event_Tweets and Event_Information column 
families; these column families are discussed in detail 
in [7]. For the purposes of this paper, it is sufficient to 
know that Event_Tweets stores tweets in a scalable 
fashion, storing large Twitter datasets by dividing the 
tweets into rows of twenty thousand tweets each. This 
allows the row size in the column family to stay near 
100 MB, which is the size that Cassandra recommends 
for best performance for retrieving rows efficiently. 
Our rows make use of Twitter’s integer tweet id as 
column names to ensure that tweets are sorted 
automatically by creation date in ascending order. 
Event_Information maintains metadata about each 
collected crisis event and provides summary 
information about events stored in Event_Tweets. For 
instance, it is possible to get a list of all keywords used 
to collect data for a given event in a single call. These 
two column families serve as the foundation for the 
index layer which allows the IDCAP to provide real-
time analytics over the collected datasets. 

 
3.2. Index Layer 
 

Creating a proper mechanism to incrementally 
index large data sets while collecting data in real-time 
is an important and challenging task. A well-designed 
indexing mechanism plays a key role in enabling real-
time analytics and provides benefits to the analysis of 
large data sets via batch processing as well. 

The index layer provides an indexing schema on 
top of Project EPIC’s large datasets via a novel design 
of the Event_Abstraction column family; this column 
family is explained in detail in [7] and is “designed for 
analytics.” It provides indexes and high level 
abstractions for Twitter datasets that are stored in 
Event_Tweets and it was designed based on the 
domain attributes that are of highest interest to Project 
EPIC analysts including event names, data collection 
dates, tweet collection keywords, and unique tweet ids. 
In all cases, the Event_Abstraction column family 
allows queries based on these attributes to be 
performed efficiently; it does this by storing the tweet 
ids that match or contain a particular attribute of 
interest. For instance, if an analyst wants to locate all 
tweets that contain the keyword hurricane, the IDCAP 
looks up a particular row and column in 
Event_Abstractions that returns a hashtable that 
contains keyword/tweet id associations. Retrieving the 
value associated with hurricane in this hashtable, 
provides a set of row_key/column references that 
indicate which tweets in Event_Tweets contain that 
keyword. Using this system, any query that simply 
needs to return a count of matching tweets can do so 
immediately by counting the number of tweet 
references stored for the attribute of interest. 
Otherwise, the query completes by fetching the 
indicated tweets stored in Event_Tweets and returning 
them to the caller. With this new design, Project EPIC 
analysts will be able to filter, search, sample, sort, and 
perform exploratory analytics efficiently on large 
Twitter datasets using IDCAP. This analysis is 
currently supported in the IDCAPs front-end web 
app—the IDCA App—and will eventually be 
integrated into a future version of EPIC Analyze [3]. 
The IDCA App is discussed in Section 4. 
 
3.3. Service Layer 
 

The service layer of the IDCAP consists of 
DataStax Enterprise (DSE), RabbitMQ, and Redis. 
Each technology and its purpose within the IDCAP is 
discussed next. This layer is the extension point for 
integrating new technologies into the IDCAP to 
implement new functionality. 
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The IDCAP make use of DSE since it provides a 
collection of open source Apache technologies that 
have been integrated to work with Cassandra; for 
instance, Spark and Pig have been modified to read 
from and write to Cassandra column families instead of 
the Hadoop Distributed File System (HDFS). 
Moreover, DSE’s integrations allow multiple 
technologies to work together including Pig, Spark, 
and Solr. For the prototype implementation of the 
IDCAP, a three node DSE Cluster was configured and 
deployed in an OpenStack environment (see Fig. 2).  

In the IDCAP’s DSE cluster, DSE 4.7.3 is used; 
this version is deployed with Cassandra 2.1 and Spark 
1.2.2. Each DSE node is configured as an OpenStack 
virtual machine that makes use of the CentOS 
operating system. Each OpenStack instance was 
configured to have its own extended volume to store 
data; each such volume was created to avoid data loss 
in the case of operating system crashes, problems with 
the OpenStack software, or hardware-related crashes. 

3.3.1. Apache Spark & Spark Streaming. Spark 
is a fast and general purpose distributed computing 
platform. Spark provides a straightforward way to 
parallelize computations across a cluster; its API hides 
the complexity of distributed systems programming, 
network communication, and fault tolerance. Spark 
extends the MapReduce model in order to support 
more types of computations including interactive 
queries and stream processing. The Spark technology 
stack consists of Spark Core, Spark Streaming, Spark 
SQL, MLlib, and GraphX. Spark Core provides the 
functionalities of task scheduling, memory 
management, fault recovery, and interacting with 
storage systems. Spark Streaming allows RDDs to be 
created from streaming data sources. Spark internally 
creates streams that consist of a series of RDDs 
(Spark’s primary data structure) and provides an API 
to transform/process each RDD that consists of data 
received from the source of streaming data. 

DSE Spark 
Streaming 

Twitter 
Streaming 

API
Rdd1, Rdd2, ... DSE Spark 

Engine 

DStreams

RabbitMQ

 
Figure 3. DSE Spark Streaming 

In the IDCAP, the Spark streaming component is 
used to stream public tweets from Twitter (see Fig. 3). 
Our spark streaming script is written in Python and 
makes use of the Pyspark module. The streaming script 

performs its task via the following steps: 1) create a 
unique set of event keywords by getting the active 
event keywords stored in Redis (see Table. I; this 
information is managed by the IDCA App, discussed in 
Section 4); 2) creating a spark streaming context; 3) 
submitting keywords to the Twitter Streaming API via 
a POST HTTP request; 4) collecting RDDs that 
contain multiple Tweet JSON objects to the Spark 
master; 5) filtering out any responses that are not 
tweets; 6) classifying each of the remaining tweets 
based on the event keywords to associate a particular 
tweet with one or more data collection events; 7) 
creating RabbitMQ messages for each classified tweet; 
8) inserting the messages created in step 7 into 
RabbitMQ queues (discussed below); 9) and repeating 
steps 3 through 8 until a stop request is received.  

We carefully configured our DSE Spark cluster and 
extensively tested the implementation of our streaming 
script to provide reliable, robust, efficient, and 24/7 
Twitter data collection. In particular, we configured 
some of the following parameters to help achieve the 
performance exhibited by the IDCAP prototype: 1) 
setting the batch interval time to 2 seconds; 2) setting 
the spark.streaming.unpersist property to automatically 
delete a persisted stream from memory when they are 
not used anymore; this setting is needed since Spark 
streams are persisted in memory by default; and 3) 
setting spark.cleaner.ttl property to 300 seconds to 
periodically clean memory since the default is infinite 
which is not conducive to 24/7 data collection.  

3.3.2. RabbitMQ. RabbitMQ is an open source 
message queuing service that provides reliable, 
durable, and persistent message queues. It provides an 
API that allows multiple clients concurrently to insert 
messages into queues and retrieve messages from 
queues. The IDCAP makes use of RabbitMQ to 
provide a set of durable and persistent queues that are 
used to receive tweets from the Twitter Streaming API 
via the work of the spark streaming script discussed 
above. For each event collected, the spark streaming 
script will create one queue in RabbitMQ. These 
queues are used to temporarily store incoming tweets 
before they are permanently stored in Cassandra by the 
IDCAP persistence script (discussed below). These 
queues thus serve as a buffer in a producer-consumer 
relationship between the streaming script and the 
persistence script allowing the two to work 
independently of each other and to shield each other 
from errors that might occur in the other. 

3.3.2. Redis. Redis is a key-value in-memory 
database; it provides a rich API over a well-known set 
of data structures such as sets, lists, and dictionaries. 
Redis stores data in memory by default; on the other 
hand, Redis can also persist data permanently onto disk 
as well by configuring its appendonly attribute 

DSE Cluster

Cassandra 
Master Node

Cassandra 
Node 2

Cassandra 
Node 3

Spark Master

Spark WorkerSpark Worker

 
Figure 2. DSE Cluster (Cassandra + Spark) 
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appropriately and specifying a location to store data on 
disk. The IDCAP makes use of Redis to enable a wide 
range of its analytics capabilities including the ability 
to answer big picture questions about data sets under 
active collection, to allow it to incrementally index 
data as it arrives, and to support customizable queries 
on that indexed data in real-time. To provide reliable, 
accessible, and efficient real-time analytics and 
incremental analytics at interactive speeds, two sets of 
Redis data structures are created. The first set of Redis 
data structures is used to keep track of the current state 
of all data collection events as well as the status of the 
streaming and persistence scripts. The names of each 
data structure is listed in Table 1 along with a brief 
description of what information is stored in each one. 
These values are updated by the IDCA App. 

Table 1. “Big Picture” Redis data structures 

app_status_hset Tracks the status of the 
streaming and persisting 
scripts 

active_collection_set Provides a unique set of 
active event names 

closed_events_set Provides a unique set of 
closed event names 

streaming_pid_set Stores the process id of the 
active spark streaming 
script  

persisting_pid_set Stores the process id of the 
active persisting script  

event_name:summary
_hset 

Tracks the global state of an 
event  

event_name:active 
_keywords_hset 

Provides a map of active 
keywords and creation date 

event_name:closed 
_keywords_hset 

Provides a map of closed 
keywords and closing date 

twitter_other 
_ messages_set 

Stores Twitter compliance 
messages received while 
streaming 

For instance, app_status_hset is used by the IDCA 
App to orchestrate the streaming and persisting scripts. 
Creating a new event in the IDCA App triggers 
event_name:summary_hset to be created and the active 
collection set to be updated. Adding new keyword(s) to 
an event by the IDCA App triggers an update in 
event_name:active_keywords_hset and closing an 
event’s keyword(s) triggers an update in both the 
event_name:active_keywords_hset and 
event_name:closed_keywords_hset. Closing an active 
event triggers the event name to be deleted from the 
active collection set and added into the closed events 
set. Moreover, the streaming_pid_set contains the 
active running process id of the spark streaming script 
while the persisting_pid_set contains the process id of 

the running persisting script; both structures are used 
with the purpose of eliminating zombie processes. 

Additionally, the event_name:summary_hset 
provides the following information for a data collection 
event: the status (active or closed), the creation date, 
the current active row in the Event_Tweets column 
family for this event, the total tweet count, and the 
current row tweet count. 
Table 2. Event-Specific Redis data structures 

event_name:tids_set:JD  Keeps a unique set of 
tweet ids 

event_name:current_ 
row_julian_date_set  

Provides a unique set of 
Julian dates for the 
current window (active 
row)  

event_name:current       
_ row_kw_set 

Stores a unique set of 
keywords for the current 
window 

event_name:analytics    
_tweets_hset 

Provides a map of tweet 
id and tweet JSON for 
current window 

event_name:ei:kw_ set  Provides a unique set of 
event keywords for  
Event_Information  

event_name:ei:jd_ set  
Provides a unique set of 
tweet collection dates in 
Julian date format for  
Event_Information  

event_name:ei:   
et_ rowkeys_set 

Provides a unique set of 
Event_Tweets row keys 
for Event_Information  

event_name:ea: geo_ 
set:JD  

Stores indexes of geo-
tagged tweets for 
Event_Abstractions  

event_name:ea:index_ 
set:JD  

Stores indexes of all 
tweets by day for 
Event_Abstractions  

event_name:ea: 
KW_set:JD  

Provides keyword day 
indexes for 
Event_Abstractions  

The second set of Redis data structures listed in 
Table 2 are created for each active event to keep track 
of each event’s information, such as keywords, 
collection dates, indexes, and the JSON objects of 
collected tweets. These data structures and 
event_name:summary_hset are incrementally updated 
by our persistence script. This script concurrently 
consumes messages from the multiple queues created 
by the streaming script. 

The event_name:tids_set:JD tracks the unique ids 
of tweets seen in the current collection window for the 
given event name. The event_name:ea:KW_set:JD 
data structure represents multiple sets based on 
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multiple events keywords (KW) and tweet collection 
dates (JD). For example, assume a test event collects 
on two keywords colorado and boulder on two days—
2016001 and 2016002—for the current collection 
window. Then, four sets are created to keep track of 
the tweets collected on those days for those keywords: 
test:ea:colorado_set:2016001, test:ea:colorado_set:2016002, 
test:ea:boulder_set:2016001, test:ea:boulder_set:2016002. 

As new tweets come in on 2016002 (the second day 
of the year 2016), they will be assigned to the correct 
set by the persistence script. To efficiently make use of 
the Redis data structures, defining the right window 
size is critical. This value determines the amount of 
data that will be stored in Redis (and therefore in 
memory) for each event. The window size has a direct 
impact on the goal of providing analytics in near real-
time at interactive speeds. The window size we 
selected is the last 20 thousand tweets received from 
Twitter, which corresponds to the length that was 
selected for the size of rows in the Event_Tweets 
column family. This decision means that we are never 
asking the persistence script to insert more tweets into 
Cassandra than its maximum recommended row size. 

The persistence script first pulls tweets from 
RabbitMQ and places them in Redis and then when the 
window size is reached, flushes the tweets captured for 
the current window into the Event_Tweets, 
Event_Abstraction, and Event_Information column 
families. Given the above information, the high-level 
responsibilities of the persistence script are now clear. 
For each active event, it subscribes to the 
corresponding queue in RabbitMQ; it gets notified by 
RabbitMQ when a tweet has arrived in the queue; it 
dequeues the tweet, checks to see if the tweet is unique 
(by consulting with the event_name:tids_set of the 
current Julian day in Redis); it stores all unique tweets 
into a batch until 256 tweets are in the batch and then 
stores them into the current row of Event_Tweets for 
that event; it then updates the Redis data structures 
related to Event_Information and Event_Abstractions, 
so they are ready to respond to queries; it then loops 
and performs these steps again until the window size of 
20 thousands tweets total has been reached, it then 
flushes the Event_Information and Event_Abstractions 
information to Cassandra. It continues to do this until it 
is told to shutdown by the IDCA App.  

When an active event is closed, first, the IDCA 
App updates the events data structures listed in Table 
1; then the persistence script consumes all possible 
tweets of the event stored in RabbitMQ, updates all 
event-related data structures listed in Table 2, performs 
a final update of the Event_Information and 
Event_Abstractions indexes, and then deletes the 
event’s Redis-related data structures to release 
resources (i.e. memory) for future events. 

 
4. IDCA App  
 

The IDCA App—a Ruby on Rails web 
application—was developed to orchestrate the IDCAP 
and its resources. The IDCA App provides a user-
friendly UI that allows analysts to focus on their 
analysis tasks without having to worry about the 
complex orchestration of IDCAP components going on 
in the background. The IDCA App sits on top of the 
IDCAP architecture and provides the following 
features: a) it allows analysts to efficiently 
create/update/close events and their keywords, b) it 
orchestrates the streaming and persistence scripts, c) it 
allows analysts to monitor streaming tweets in real-
time, and d) it displays event metrics to analysts by 
providing customizable queries on the streaming data 
at interactive speeds. The IDCA App provides this 
functionality via three tabs: Process & Event Manager, 
Real-Time Monitoring, and Incremental Analytics. 

The Process & Event Manager allows analysts to 
manage events. Creating a new event triggers the 
creation of the event_name:summary_hset data 
structure in Redis. Adding keywords to an event 
updates the related Redis data structures listed in Table 
1. Furthermore, the IDCA App provides a process 
manager to manage the streaming and persistence 
scripts discussed in Section 3. 

When an analyst makes a change to an event, the 
streaming script needs to be stopped and then restarted. 
Currently, this is done manually via a button. When 
this button is clicked, the spark streaming process is 
gracefully disconnected from Twitter and then stopped 
after all existing Twitter data has been deposited into 
the relevant RabbitMQ message queues. The user can 
then click on the Resume Streaming button to have the 
streaming script started again; it will then reconnect to 
Twitter using the updated event information and 
resume collecting data once again. 

The Real-Time Monitoring tab allows active events 
to be monitored in near real-time. The values presented 
in this tab’s charts are calculated by indexes stored in 
Redis for the current window of each event. 

As shown in Fig. 4, three columns of information 
are provided for each active event. The first column 
shows the tweet count of the event and the day 
distribution of the active row (a row of 20K tweets can 
easily contain tweets from multiple days) and it 
provides tweet distribution percentage by days that 
exist in the active row. Also, this column provides the 
number of columns left in the active row (i.e. the space 
for tweets before this row is full). As shown in Fig. 4, 
the active row of the 2016 Test Earthquake event is 
2016 Test Earthquake:6 and it contains 14,856 tweets. 
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This row contains tweets that were collected on the 
following days: 2016120, 2016121 and 2016122. Also, 
25.7 percent of columns are left before this row is 
considered full and a new active row is created. 

The second column shows keyword distribution of 
tweets that are collected on the last day of the event in 
real-time. As shown in Fig. 4, 2,424 tweets have been 
collected on the last current day (2016122) of the 2016 
Test Earthquake event and the tweet distribution chart 
is based on seven keywords. The last column displays 
maps of the geo-tagged tweets that exist in the events 
active row. As shown in Fig. 4, the 2016 Test 
Earthquake event contains 33 geo-tagged tweets stored 
in the 2016 Test Earthquake:6 row of Event_Tweets.  

The Incremental Analytics tab provides analysts 
with a user interface to incrementally process queries 
on the entire set of tweets for an event including all 
tweets stored for the event in Cassandra as well as all 
tweets stored in Redis for the current window of real-
time data collection. The logic of IDCAP’s support for 
incremental analytics applies a query on both the 
tweets in the current window (via real-time 
calculations) and the previously collected tweets of an 
event (via batch processing). After completing a query 
request, the results of both the real-time analysis and 
the batch processing are shown in a unified view.  

In the Incremental Analytics tab, the first step is to 

choose an event from a list of all active events; this list 
is populated by the IDCA App interactively. It allows 
queries to be made using keywords, geolocation status, 
or on all tweets. In Fig. 5, we show the results of 
making a query on the 2016 Zika Virus event for the 
keyword #ZikaVirus. Here, the IDCA App performed 
an incremental query on that event to display the 
number of tweets that contained #ZikaVirus for all 
tweets collected for that event (in this case 55,514 total 
tweets over the course of 17 days of collection). 

As shown in Fig. 5, both batch and real-time query 
execution times are provided. The batch results are 
shown on the left side with blue column bars and its 
results were calculated by making use of indexes 
stored in Event_Abstractions within 0.178 seconds. On 
the right side, the real-time results are shown with red 
column bars. For example, 299 tweets tweeted on the 
day of 2016127 contain the #ZikaVirus keyword. The 
real-time results are processed in 0.002 seconds by 
making use of the Redis data structures that store the 
tweets for the current collection window. In this case, 
multiple days are shown in the results because the 
current window contains tweets from multiple days. 
Note: the batch processing speed is fast due to the 
work performed in designing the Event_Abstractions 
column family. Even if this event had millions of 
tweets, performance would be similar. 

 
Figure 4. Real-Time Monitoring 

 
Figure 5. #ZikaVirus results 
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5. Evaluation 
 

An example of the IDCAP’s support for real-time 
tweet monitoring and incremental analytics are 
provided in Section 4. These features are not supported 
at all by Project EPIC’s previous systems. In this 
section, the exploratory batch data processing 
capability of the IDCAP is evaluated with respect to 
EPIC Analyze (which makes use of Apache Solr for 
most of its capabilities) and EPIC Collect. The IDCAP, 
EPIC Collect, and Apache Solr each provide their own 
indexing mechanism and their batch data processing 
steps were explained in detail in [7]. 

To evaluate the three systems, three Project EPIC 
datasets (see Fig. 6) were selected; each dataset was 
indexed in the three systems. To evaluate these 
systems, the following query was used: calculate the 
user tweet count distribution of all tweets for a 
particular event. That is, for a given event, find all 
unique users in the event and then calculate how many 
tweets each user contributed to the event. This query 
was selected because it cannot be directly answered by 
any of these systems using their indexes. Therefore, to 
answer this question, each system must perform more 
work than simply looking up answers in pre-computed 
indexes. This query was performed on each system. 
The time spent to perform the query was recorded. 
Each query was performed five times using the same 
set of test machines and the average time across five 
runs is provided in Fig. 6.  

EPIC Analyze makes use of Apache Solr to answer 
analyst queries at interactive speeds since EPIC 
Analyze only ever displays 50 query results at any one 
time due to a carefully-designed pagination mechanism 
[3]. Therefore, retrieving small chunks of query results 
by Apache Solr does not slow down analysis tasks. 
However, when it comes time to read all of the tweets 
of one of Project EPICs large datasets to create a hash 
map of users that tracks their contribution to that 

dataset, the IDCAP performs significantly faster than 
EPIC Collect and Apache Solr (see Fig. 6). According 
to the results, the IDCAP is at least 2.93 times and at 
most 5.58 times faster than EPIC Collect; and at least 
10.54 times and at most 17.86 times faster than Apache 
Solr. 

These significant results are achieved via the design 
of our column familes. Event_Tweets efficiently stores 
billions of tweets in sorted order with no duplication 
while respecting Cassandra’s recommended row size 
of 100 MB. Event_Information provides a big picture 
view of an event in constant time; with a single API 
call, one can retrieve all of an event’s row keys in 
Event_Tweets, its keywords, the days of its collection, 
and detailed information on the status of the event. 
Before the use of this table, our infrastructure required 
us to generate all possible row keys for an event to see 
which ones were actually generated and used for an 
event. This process could take many minutes for large 
events; now, all row keys used are stored in 
Event_Information and retrieved in constant time [7]. 

Event_Abstractions serves as an index into the 
tweets stored in Event_Tweets. Its design is generic 
enough for many different indexes to be created and 
accessed. For instance, all geo-located tweets for an 
event can be retrieved in a single API call on 
Event_Abstractions. This was not possible in our 
previous infrastructure; one had to access tweets by 
keywords and date of collection and then filter down to 
those that were geolocated. All of these design 
decisions combine to produce an overall system that is 
orders of magnitude faster than our previous systems. 

 
6. Related Work 
 

Our work builds on the work that was invested in 
the original research to design, develop, and deploy 
EPIC Collect [1, 2, 24] and EPIC Analyze [3]. This 
work was a significant achievement at the time, 
providing new insights into the software architectures 
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required to make data-intensive software systems 
reliable and scalable and tackling the initial thorny 
work that was required to identify a data model that 
supports those characteristics for the reliable collection 
of large Twitter datasets. We now discuss related work.  

In [19], a software architecture for collecting and 
analyzing geospatial and semantic information from 
Twitter data was described. The tweets were consumed 
by a Twitter4j Java application and then transferred 
into a PostgreSQL database using the PostGIS spatial 
extension. Wordnet and Solr were used to relate tweets 
together if those tweets share the same meaning. The 
tweets are then made available by a Django web 
application, using GeoDjango for geospatial queries 
and the Haystack API for semantic queries. The goal of 
this infrastructure was to search for tweets via semantic 
keywords and coordinates, and export the results via a 
map or CSV file. The focus of [19] is on a particular 
domain-independent analysis technique and not with 
supporting the entire analysis life cycle for crisis 
informatics research. In contrast to their work, we store 
the entire JSON object of collected tweets in Cassandra 
in a way that allows us to answer all deep queries 
related to the entire tweet object. 

In [5], a software architecture for the analysis of 
cloud-based data streams is proposed. The proposed 
architecture’s aim is to support system management of 
large enterprise data centers for cloud based 
infrastructures and to analyze the data collected to 
glean useful information about the state of the system. 
Our work shares the same goal of storing, processing, 
and analyzing large amounts of information but the 
type of information is different. In [5], the work 
focuses on system monitoring by keeping system 
related information stored in HDFS and HBase clusters 
and analyzing them using MapReduce jobs generated 
by programs written using Apache Pig. We focus 
instead on crisis data sets. We do, however, make use 
of similar techniques; for instance, our work on ISM 
[6] sorts tweets using MapReduce jobs generated by 
the DataStax Enterprise version of Apache Pig which 
can read/write data stored in Cassandra. 

In [11], an Emergency Situation Awareness-
Automated Web Text Mining (ESA-AWTM) platform 
was presented; it is designed for crisis coordinators in 
Australia. The goal of this system is to identify 
situational awareness information from tweets 
generated during the response phase of crisis events. 
The ESA-AWTM platform’s interface allows users to 
monitor and refresh alerts related to queries of interest. 
The Burst Detector/Alert Monitor interface provides 
stylized words to visualize incident status based on 
statistical models. The Cluster visualizer summarizes 
situational awareness information from streamed 
tweets by using the Carrot Clustering engine and Solr. 

Support Vector Machines are trained to detect high-
value messages such as infrastructure damage. We 
share the same goals of designing systems for 
emergencies. We would like to provide the types of 
queries provided by ESA-AWTM in our future work. 
 
7. Conclusions 
 

In this paper, we reported on a novel software 
infrastructure called the Incremental Data Collection 
and Analytics Platform. We have shown how various 
data analytics frameworks such as Cassandra, Spark, 
Redis, and RabbitMQ can be efficiently deployed 
together in support of real-time data collection and 
analytics. The IDCAP can incrementally index 
streaming data in real-time and perform real-time data 
analytics on the current collection window at 
interactive speeds. Furthermore, the IDCA App was 
developed to efficiently make use of the IDCAP. The 
IDCA App provides a user interface for analysts to 
orchestrate the IDCAP to stream, persist, and monitor 
tweets in real-time. The IDCA App provides 
incremental analytics that allows analysts to perform 
their queries in real-time at interactive speeds without 
worrying about big data collection and analytics related 
challenges.  

To conclude, developing the IDCAP requires 
software engineering skills to trade one class of 
technology for another, and it involves determining the 
proper architectural style that supports data analytics 
using both real-time and batch processing techniques. 
Although the IDCAP was applied to Twitter datasets 
and the domain of crisis informatics, our design 
techniques can be applied to other application domains 
and datasets to provide scalable and incremental 
storage and analytics more broadly. Therefore, this 
work represents a contribution to software engineering 
with respect to software architecture design and 
technology trade-offs and a prototype infrastructure for 
transitioning from batch data processing to real-time 
data collection that other software engineering 
researchers can use in their own work when making 
use of columnar NoSQL data stores. 
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