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Abstract
Due to the lack of a secure supply chain, it is not possible

to fully trust the integrity of electronic devices. Current
methods of verifying integrated circuits are either destruc-
tive or non-specific. Here we expand upon prior work, in
which we proposed a novel method of reverse engineering
the finite state machines that integrated circuits are built
upon in a non-destructive and highly specific manner. In
this paper, we present a methodology for reverse engineering
integrated circuits, including a mathematical verification of
a scalable algorithm used to generate minimal finite state
machine representations of integrated circuits.

1. Introduction

The integrity of our computing hardware is of critical
concern in industries such as energy generation and distribu-
tion, aviation, and health care. Many of the ICs that control
our desktop computers, servers, SCADA systems, and a
range of other devices are designed in the U.S. but put into
silicon overseas. [1] This creates a large gap in our control
of the supply chain which puts all systems that use this
hardware at risk for modification or injection attacks. Today,
many organizations spend enormous amounts of money
verifying the integrity of a given piece of hardware; they
are then locked in to that hardware for decades afterwards,
resulting in obsolete hardware and software running critical
systems.

Currently, there is no way of verifying the integrity of the
entire supply chain, from design to use, to ensure the level
of integrity needed. In dividing this work into smaller, more
feasible pieces, we have chosen to focus on examining the
end product–the integrated circuit (IC). Many modern ICs
are built upon finite state machines (FSMs). In this research,
we have developed a method for rediscovering the FSM that
an IC is built upon using a nondestructive and intelligent
brute force method. Prior work has focused on destructive
reverse engineering methods that use images of the tran-
sistor levels to determine function [2], and nondestructive
characterization techniques like power usage, timing delays,
current leakage, and electromagnetic imaging which can be
used to certify an IC against a known-good IC. [3]–[5].

There are a few destructive existing methods for de-
termining if an IC deviates from the original design; these

are expensive and time consumptive but extremely accurate.
Alternatively, there are a variety of non-destructive imaging
methods for determining if an unknown IC is different from
an ’assumed-good’ benchmark IC. However, these methods
often only work for large or active differences, and are
based on the assumption that the benchmark chip has not
been corrupted. What is needed, and what we will detail
in the following sections, is an algorithm to enable a fast,
non-destructive method of reverse engineering ICs to ensure
their veracity. We must assume the worst case scenario in
which we have no prior knowledge, no design documents,
no labeling, or an out-of-production IC.

The mathematical theory behind our approach is pre-
sented in two parts. First, we construct a tree representing
the IC, and then we determine the underlying state machine
based on said tree. The evaluation tree is constructed by
evaluating every possible input stream on the IC. Each
evaluation tree is unique for each FSM, and any two FSMs
that share the same evaluation tree are equivalent. It should
be noted that evaluation trees are normal, as defined in
[6], meaning the ordering on the nodes is preserved, al-
lowing for the concept of descendant nodes and subtrees,
which will be necessary as we proceed. Through basic
pattern matching we can reduce the nodes and subtrees to
work backwards towards the original state machine. This
work will verify that both operations yield a state machine
equivalent to the implemented machine. In addition, to
mathematical verification, we tested our approach using a
combined hardware/software implementation (subject to a
future publication).

We begin by discussing the foundations of this approach,
previous work, and related material. We then present our
contribution to the problem by providing the mathematical
foundation and the specific solution based upon finite state
machines and tree exploration.

2. Prior Work

In theory, a black box is a device which takes inputs
(signals applied to pins or ports) and then responds (via
pins, ports, or other methods). The actual process which
transforms the input into output is unknown. A black box
test or analysis attempts to discover this functionality with-
out damaging the system under test. There are a variety of
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analysis methods, both destructive and nondestructive, that
explore either the physical or logical makeup of the IC.

Physical Reverse Engineering The basic destructive
method for exploring an IC is relatively simple in concept,
but difficult to execute with the required precision. This
method physically removes micrometer thin layers of the IC,
paring it down slowly, and taking pictures with an electron
microscope at each layer. [7] It is then possible to, using
those images, reconstruct the physical layout of the chip and
work upwards through the layers to recreate the transistor
mapping. With the right tools and techniques, this is a very
accurate and exact method. However, it is also destructive
to the extreme - after stripping the IC down, there is nothing
left but the plastic base and I/O pins. With some knowledge,
it is possible to perform invasive probing of the IC, rather
than a full destructive reverse engineering, to perform a more
limited quality control check on the IC. In invasive probing,
a very fine probe is inserted into the IC, after removal of
the outer plastic or ceramic casing. This is usually only
performed on exposed faces (not moving into deeper layers
of the IC), due to the extreme difficulty of drilling into the
IC without damaging any of the surrounding components.
[8]

IC Characterizations Invasive probing and destructive
reverse engineering damage the IC under test, often beyond
any further usage. Other methods, such as structural, optical,
or electrical characterizations [9], can be used to gain a
less destructive but also a less detailed understanding of the
IC. While these analysis methods cannot provide in-depth
description of functionality that probing and reverse engi-
neering can, they do provide a method for quickly checking
for deviations from a known-good IC. These methods are
more often used by manufacturers on samples from bulk IC
purchases. The primary method of nondestructive fault de-
tection in an IC uses electromagnetic, heat, or other physical
outputs from the IC to determine a known-good baseline and
then compare to this baseline for detection of alterations.
It has been shown that in older ICs, each state switch of
a transistor outputs a small amount of photons that can be
detected. For example, in an IC designed to perform an AES
encryption, the initial AES key can be recovered through this
type of characterization. [10] Most other imaging methods
are not this precise; they can detect unusual variations in the
IC structure to 1 or 2 millimeters, which is not enormously
helpful in determining what internally, at the transistor level,
has been altered from the original design.

Logical Exploration Physical reverse engineering meth-
ods can be destructive or non-conclusive, and are based
solely on the physical. Logical methods seek to reverse engi-
neer the logical underpinnings of the IC, the state machines.
There are three primary papers which we will review here;
the first is Edward E. Moore’s foundational theoretical paper
[11], the second is a doctoral dissertation (and correspond-
ing, supporting conference papers) by Michael Brutscheck
[12]–[16] and the third was the preliminary work for this
paper.

In 1956, Edward F. Moore described a mathematical
foundation for logically reverse engineering finite state ma-

chines. In his Gedanken-Experiments [11], Moore details
a situation in which a researcher needs to discover the
functionality of a device without physically dismantling it;
his example was drawn from experiences in the world wars,
and assumed that the device would have an anti-tamper seal
that would, upon breaking, destroy the device. In Moore’s
paper, an experiment is performed on the state machine by
giving it a specific input sequence and recording the output
sequence. Moore posits that, given two fully reachable state
machines, S and T, each with a table of input sequences
and the corresponding outputs which are produced upon the
entry of the input into the system, these two state machines
are isomorphic if the input and output table obtained from
querying state machine S can be obtained by substituting
new names for the input/output table obtained from state
machine T, and vice versa. Isomorphic machines will always
have the same behavior; they are indistinguishable from one
another by any experiment, sequential or branching. State qj
is indistinguishable from state qi (both of state machine S) if
and only if every experiment performed beginning with state
qj has the same output as the same experiment performed
on qi. Two states are distinguishable only if they are not
indistinguishable. It is then also possible to state that state
qi of machine S is distinguishable from state qj of machine T
if there exists an experiment that, if the same input is placed
on both machines starting with their respective initial states,
the output is not identical.

Moore’s method, while logically sound, applied only to
abstract or conceptual state machines. Real FSMs embedded
in ICs pose additional complications, such as non-fully
reachable state machines and more complex state machines,
as well as the physical limitations inherent in interacting
with a real IC. A non-destructive method of characterization
of the FSM an IC implements was proposed by Brutscheck,
et al. [14], which shows potential in implementing Moore’s
algorithms. The Brustcheck method follows several stages.
The first of these is the pin determination based on elec-
trostatic discharge theory, as described in [9], [17], and
applied in both [15], [18], followed by a determination of
the IC type: combinatorial, sequential linear, or sequential
nonlinear. The FSM is then divided into Mealy or Moore
automata. These determinations are assumed in this work;
the Brutscheck method fulfills the requirements to determine
the state machine competently and does not require further
advancement.

In 2013, this author published a method of reverse
engineering a state machine, improving upon prior work by
allowing for on-terminating state machines and creating an
implementation which provided much quicker results. [19]
This was further explored in Smith’s PhD dissertation. [20]
The algorithm was originally implemented on a single core,
single thread environment as a proof of concept. Results to
this work were promising, and this work seeks to further
that research.

Note: for brevity reasons, the software and hardware
design & implementation discussion is omitted from this
paper. Preliminary information has been covered in previous
work and improvement details will be the subject of future
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work.

3. Prerequisites

Below we define the structures and notation relevant
to the proposed method, culminating with the concept of
tree equality for the purpose of manipulating those trees
representing the FSMs.

3.1. Assumptions

The work presented here relies upon a few critical
assumptions:

• The IC state machine must be a Moore FSM (i.e.
the output depends only on the machine’s state),
and more specifically, not a Mealy FSM (i.e. the
output depends on both current state and the input).
It is possible to translate a Moore to a Mealy, or
vice versa but this algorithm was based on Mooore’s
work

• An isolated state machine.
The FSM must be in isolation and separated from
any outside source which may affect the states or
state transitions. In practice, this means that the
FSM cannot be connected to any sort of non-volatile
memory. Also, it cannot be allowed to take any input
outside of that which is provided via the algorithmic
testing apparatus.

• Scalability is possible.
Though we have a theoretic basis for trees with
any number of children/input pins, the larger this
number, the greater the impact to the efficiency of
our algorithm, which is a topic to be explored more
thoroughly in future work.

• The single origin point is always accessible.
There must be a single point of origin that can be
accessed through a reset-style input. Physically this
may be embodied in the power-off/power-on reset or
a designated reset pin. To explore the tree properly,
it is necessary that the exploration always begin at
the same point.

3.2. Tree Framework

In order to better understand the unknown functionality
and processes of a given FSM, the behavior of that FSM
will be modeled using a tree structure. More specifically, an
FSM is represented as a tree T with a set of nodes N , where
each node has, at most, c = 2x children, where x ∈ N+,
implying the FSM being modeled has x input pins. A node
without any children is referred to as a leaf. For algorithmic
purposes, nodes are labeled numerically (top to bottom, left
to right), beginning with 0 for the root node and reading
left to right down each level of the tree. Likewise, edges
originating from the same parent node are grouped together
and labeled numerically from left to right. See Figure 1 for
an illustration of the node and edge labeling conventions.

10 11 12 13 14 15 16 17 18 19 20

0

1 2 3 4

5 6 7 8 9

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 1. Example of a tree with nodes and edges labeled and an example
path highlighted in red.

Each node in the tree represents a state in the FSM, with the
child nodes representing the states that can be transitioned
into from the given node or state. The root node of the tree
is the FSM’s initial state. A tree with no nodes or children
is referred to as the empty tree and denoted 0. As with
the formal definition of a tree, each tree is a set N with c
functions defined as follows:

Si→: N → N ∪ 0

For example, if node n has children s1, s2, . . . , sc, then n
Si→

si for 1 ≤ i ≤ c or Si(t) = si. Additionally, conventions
dictate that a tree T is referred to by its root node, meaning
notationally S1(T ) refers to the leftmost child of node T ,
which is, in turn, the root node of the leftmost subtree of
T . Likewise, the subtree labels proceed in ascending order
from left to right. Therefore, ScT refers to the rightmost
child of T and rightmost subtree of T . We write Si(T ) ≤ T
to denote that Si(T ) is a subtree of T .

The behavior of the FSM is then mapped as paths
through its representative tree. A path P = p0, p1, ..., pd−1
where d is the length of the path and each pj , where
0 ≤ j ≤ d − 1, indicates the label of the edge to select
when moving from the current node in the sequence, e.g.
a 0 indicates a move to the node’s leftmost child, while a
1 indicates a move to the node’s second leftmost child and
so on. Paths pass through a sequence of nodes, the labels
of which can be referenced as follows labels = l0, l1, ..., ld,
such that lk

Si→ lk+1 for 1 ≤ k ≤ d − 1 and 1 ≤ k ≤ c.
Further, a node n is classified as a descendant of node l if
and only if there exists a path from l to n. In the context of
FSMs, the input to state l1 led to a transition to state l2 and
so on and so forth through the state machine and on down
the tree.

For a given path, p, or series of inputs to the FSM, the
label l of the final node reached is given by the following:

l =

d∑
i=0

(2ix + c(i)) (3.1)

where

c(i) = (2x− 1)

i−1∑
j=0

(c(j)) + pi (3.2)

Conversely, if we are given a label, l , and need to solve for
the path, p of length d from the root to the node with the
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given label, i.e. the series of inputs to the FSM, is given by
the following:

pi = (li+1 − 1) mod 2x (3.3)

Which means we start with the given label ld and work our
way backwards up the tree to the root node, by first solving
for pd−1 as follows:

pd−1 = (ld − 1) mod 2x (3.4)

where ld is the given label. We can use the given label to
solve for the label of its parent node using the following
equation:

li+1 =
li+1+1 − (2x)i+1+1−1

2x−1
2x

+
(2x)i+1 − 1

2x− 1
(3.5)

which in turn, requires knowing the length of the path d,
given by:

d =

⌈
log(2lx− l + 1)

log(2x)
− 1

⌉
(3.6)

Equations 3.6 and 3.5 are derived from the fact that the
number of nodes in a tree is (2x)d+1−1

2x−1 .

3.3. Equality

We now examine what it means for two trees to be equal.
For Moore’s FSMs [11], equality of nodes is established if
the output is the same for both nodes. This is an example
of an equivalence relation (denoted as =N ), illustrating that
equivalence relations are valid on evaluation trees. Let =N

be an equivalence relation on nodes of a tree. Two trees are
equal T1 = T2 if and only if T1 and T2 are both 0 or all of
the following are true: T1 =N T2, and Si(T1) = Si(T2) for
all i such that 1 ≤ i ≤ c.

Theorem 3.1. = is an equivalence relation.

Proof. The proof is by structural induction.
Base Case: 0 = 0. This is trivially true, since there is only
one empty tree.
Let T1, T2, and T3 be trees in which all of their subtrees
are equal.

Reflexive
We know T1 =N T1 by reflexivity on =N . Since
all the subtrees of the given trees are equal, we
also know Si(T1) = Si(T1). Therefore, T1 =
T1.

Symmetric
Let T1 = T2. We know T2 =N T1 by symmetry
on =N , since =N is an equivalence relation.
Furthermore, Si(T2) = Si(T1), since all sub-
trees of the given trees are equal. Thus T2 = T1.

Transitive
Let T1 = T2 and T2 = T3. We know T1 =N T2

and T2 =N T3, thus T1 =N T3 by transitivity
on =N , since =N is an equivalence relation.
By definition Si(T1) = Si(T2) and Si(T2) =

Si(T3). Finally, since all subtrees of the given
trees are equal, we know Si(T1) = Si(T3).
Therefore, T1 = T3.

Thus by structural induction = is an equivalence relation on
trees.

Corollary 3.2. If A = B and if PA is a path through A
and PB is the same path through B, then PA = PB .

Proof. A path through a tree is also a tree. Consequently,
the corollary follows directly.

Thus far in this discussion of trees, the tree has not
been limited to the finite or acyclic variations. Consequently,
this definition of equality will not work for any practical
computation due to real world limitations on time and space
resources. Therefore, we will now present a limited version
where equivalence between trees is determined out to a
given depth, d. Let =d be a relation on trees, where d ∈ N.
Then T1 =0 T2 if and only if T1 and T2 are both 0 or
T1 =N T2. Additionally, T1 =d T2 if and only if T1 and
T2 are both 0 or all of the following are true: T1 =N T2,
Si(T1) =d−1 Si(T2) for all i such that 1 ≤ i ≤ c.

Theorem 3.3. =d is an equivalence relation on trees.

Proof. Since =d is a limited version of =, the proof is
almost identical to that of Theorem 3.1 and has thus been
omitted.

Corollary 3.4. If PA is a path through A and PB is the
same path through B, and A =d B and |PA| < d then
PA = PB .

By applying the above limitation, we now have an
effective means of comparing trees.

4. Solution

Now that the necessary structures for representing a
FSM as an evaluation tree and a means for comparing
two FSMs based on their respective evaluation trees have
been established, we are ready to present a procedure for
streamlining the creation of evaluation trees to make them
more practical.

4.1. Folding

It is simple to show that if a state machine has a loop,
then the subtrees generated from those states are identical.
The basic premise of the process presented here is to go in
the other direction. That is, we find identical subtrees and
replace the redundancies with a loop back to a single copy
of the subtree, as shown in the example in Figure 2.

Theorem 4.1. If two FSMs M and N generate the same
evaluation tree T , then M is equivalent to N .

Proof. Let M and N be two FSMs that both generate T .
Two machines are equal if and only if for every input word
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a
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d f

Figure 2. Two simple examples of the folding procedure.

w, M(w) = N(w). Let w be an arbitrary word. M(w)
can be evaluated by following the transition function for
M . Now M(w) can be related to a path in T , where a
transition from one state to another is modeled as the move
from a parent node to one of its children. If wk = 0, then
continue with S1(T ); if wk = 1, then continue with S2(T )
and so on. This path will produce M(w). Since it is possible
to do the same thing for N because N also generates T ,
M(w) = N(w). Finally, since w was arbitrary N = M .

Theorem 4.2. Given FSM M and its corresponding evalu-
ation tree T , if A ≤ T and B ≤ T and A = B, then there
is an equivalent machine M ′ where A and B represent the
same state in M ′.

Proof. Assume that A ≤ T and B ≤ T and A = B. If A
and B are the same state then we are done. Now construct a
machine M ′ where every transition to state B is replaced by
state A. Let T ′ be the evaluation tree for M ′. Now either
B ≤ Si(T ) for some i such that 1 ≤ i ≤ c or B is T ,
in which case B = T . If B = T then A = T ′, so T ′ =
A = B = T and thus T ′ = T . Otherwise, B ≤ Si(T ).
Again there are two possibilities: B ≤ Sj(Si(T )) (where
1 ≤ j ≤ c), or B = Si(T ). Continue this process until
we find a subtree D of T where B = D. Let D′ be the
same descendant in T ′, then D = B = A = D′. Now Ds
parent is equal to D′s parent. Si(p(D)) =N Si(p(D

′)), and
D = D′. By induction, every ancestor of D is equal to every
ancestor of D′. Since T is an ancestor of D and T ′ is the
same ancestor of D′, then T = T ′. Therefore, since the two
evaluation trees are equal M = M ′.

4.2. Algorithm

Using Theorem 4.2 presented above, it is now possible
to formulate an algorithm. The premise of the algorithm
is as follows: a tree or subtree can be replaced with an
equivalent tree while allowing the underlying FSM to remain
unchanged. It is then possible to eliminate entire branches
of the tree by looping back to a node that has previously

Algorithm 1 Fold
procedure FOLD(Tree T )

Q q
seen← ∅
q ← T
while q 6= ∅ do

t← q
if ∃x ∈ seen : t = x then

switch(t, x, seen)
else

seen← t
q ← l(t)
q ← r(t)

end if
end while

end procedure

been explored. The implementation shown in Algorithm 1
employs a basic breadth first search on a tree, meanwhile,
Algorithm 2 replaces every occurrence of a in the tree with
b.

Algorithm 2 Switch
procedure SWITCH(Tree a, Tree b, Set〈Tree〉 seen)

for x ∈ T do
if l(x) is a then

l(x)← b
end if
if r(x) is a then

r(x)← b
end if

end for
end procedure

As a consequence of Theorem 4.2, we have the following
corollary.

Corollary 4.3. At each step of the algorithm, T is an
equivalent state machine.

Proof. The only modification made to T is the switch
procedure, which only replaces one equivalent subtree with
another, thus the corollary follows.

Theorem 4.4. The Fold algorithm halts.

Proof. T has been generated by a FSM M , so by definition
T is finite. Therefore, the longest path through T without
seeing an equivalent state is |M |. Algorithm 1 is then
guaranteed to cut every branch after length |M | + 1. Thus
the output tree is bounded by |T | < c|M |+1. Since this
implementation utilizes a breadth first search, it is impossi-
ble to travel down an infinitely long branch. Therefore, the
algorithm must halt when the tree is fully folded, or after
c|M |+1 steps.
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4.3. Finiteness

As already noted, we cannot use the normal definition of
= on trees because the algorithm would then be potentially
infinite. Unfortunately, if we attempt to use =d rather than
=, the theorems and resulting algorithm are no longer true.
However, with a little care in selecting an appropriate value
for d, we can show that the theorems are almost always true
and still useful.

First, it should be noted that for trees T1 and T2, intuition
dictates that the larger d is, the more accurate our results
will be, since we will be considering a greater portion of
the tree. That is:

lim
d→∞

T1 =d T2 ≡ T1 = T2.

Next, given that the diameter of a graph is defined to be
the length of the longest geodesic, or shortest path, among
all node pairs [21], let Diam(M) denote the diameter of the
evaluation tree corresponding to a given FSM, M .

Theorem 4.5. Theorem 4.2 remains true if the Diam(M) ≤
d.

Proof. Assume that A =d B, but that A and B do not
represent the same state in the machine. Then ∃e > d :
A 6=e B. Let e be the smallest such number where this is
true. This implies that there are paths PA and PB in A and
B respectively that are the same path, but are not equivalent
and |PA| = |PB | = e. Since e is the shortest such path, no
loops in the state machine have been made. Therefore, there
are at least e states in M . Furthermore, there is a path PA

that is a minimum path between two states with at least e
states. Thus, by definition, Diam(M) ≥ e > d.

Theorem 4.5 is actually much stronger than one would
expect. While there are example state machines of size
d+ 2 where the folding technique will fail, these examples
are a relatively small set of possible state machines. In
general, using a depth of d for =d will distinguish between
different state machines of size up to cd−1.

4.4. Comparison Depth

An additional component of this methodology that must
be addressed is at what point it is possible to assert that
two states A and B are equivalent? How deep in the tree
structure that one must compare? This point will hereafter
be referred to as comparison depth. Within the context of
evaluation trees, the comparison depth can be thought of as
the depth to which A and B must be evaluated and found
equivalent before being deemed equivalent states overall.
The acceptable comparison depth for a given FSM is deter-
mined by multiple factors based on the system in question.
For example, a more critical system will require a higher
comparison depth. To formalize this concept, let the depth,
d = cl, represent the necessary comparison depth. Then
A and B are considered equivalent states if A =cl B. As a
consequence, the FSM’s evaluation tree must be evaluated to

a minimum of depth cl+1. Figure 3 shows a fold procedure
performed on equivalent states D and E with a comparison
depth of 2.

5. Optimization

Now that we have established a valid, finite algorithm,
we turn our attention toward optimizing its speed. The
primary inhibitor faced by the algorithm is the potential
combinatorial explosion. Consider a FSM with 70 states.
Constructing a binary evaluation tree that is 70 levels deep
requires 270 operations, or 1.18×1021 operations. Assuming
one trillion operations per second, which is a high estimate,
that many operations would require roughly 3500 years to
calculate. Clearly, this is prohibitively expensive. Further-
more, the vast majority of the evaluation tree isn’t needed,
owing to the likelihood that many of the high level states,
those in the first ten tiers or so of the tree, will be matching
states. By iteratively exploring the tree to the comparison
depth, comparing and reducing the tree, and then exploring
only those un-reduced nodes, it is now possible to perform
an intelligent brute force exploration. This method will re-
duce the amount of the tree that must be explored, drastically
reducing the time required. For example, to re-evaluate the
70-state tree described above with a comparison depth of
five, the algorithm can first explore seven levels deep in the
tree. If the initial tree has one line of matching states, say the
rightmost (a waiting state, where a given state will remain
in that state for all inputs except one specific input), we can
already eliminate approximately 1/8 to 1/4 of the tree.

Through this intelligent brute force method, we are able
to iteratively explore and reduce the larger, possibly infinite
tree. To explain this in greater detail, we present Figure 4
and an example using this graphical representation. Our
initial exploration of the tree should be to a depth equal
to the comparison depth plus at least one. A depth of the
comparison depth plus one will allow us to detect if the
origin node is identical to any of its children, or if those
first level children are identical to each other.

After this initial exploration, step 1 in Figure 4, and
initial reduction, step 2, of the primary tree, we then consider
any of the leaf nodes (defined to be leaf nodes by the
comparison depth in use) that have not been removed due
to higher-level loops and reductions. Each of the unreduced
leaf nodes become the origin of a secondary tree. All of the
secondary trees are explored to the comparison depth plus
one depth (step 3) and reduced individually (step 4). After
each secondary level tree has been explored, we then group
all the secondary level trees, or siblings, and combine them
with their parent primary tree. This larger tree, consisting
of the entire currently-explored node space, is then reduced
as a whole (step 5).

We then consider any leaf nodes not yet removed or
looped back into the tree. These unexplored leaves become
the origin nodes of the tertiary trees and are explored to the
comparison depth plus one depth again, as shown in step 6.
We reduce each of the tertiary tree individually (step 7) and
then join them with only their siblings and secondary-level
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Figure 3. An example of a fold procedure performed with a comparison depth of 2.

Figure 4. A graphical representation of the iterative folding process

2912



parent (step 8). This can be seen in the smaller image in
Figure 4. After reducing all of the tertiary trees with their
respective siblings and parents, we then reduce the entire
tree, including the primary, secondary, and tertiary trees,
(step 9).

This process repeats, expanding with each level of the
tree. If at any point all of the leaf nodes are removed or
looped back into the tree, the exploration of new nodes ends
and we simply perform the reduction steps.

Therefore, since we don’t need the entire tree, we need
an algorithm that will work iteratively on subtrees. Let
foldd be the fold procedure while using T1 =d T2 as our
test for tree equality, rather than T1 = T2.

Theorem 5.1. If T is an evaluation tree for M and Tk is
T evaluated out to depth k, then foldd(Tk) =k−d foldd(T )

Before presenting the proof for Theorem 5.1, let us pause
to clarify the notation used. Tk is a tree evaluated k levels
deep. The result is a k − d tree with the leaf nodes below
depth k − d yet to be evaluted, which means that we are
unable to test equality. Therefore, folding a finite tree will
produce the same results for the first k − d levels.

Proof. Since the fold procedure uses a breadth first search,
the evaluation of foldd(Tk) and foldd(T ) are identical for the
first k−d levels. Therefore, the resulting trees are identical.

With Theorem 5.1, it is possible to formulate an
improved, iterated algorithm outlined in psuedocode in
Algorithm 3.

Algorithm 3 Iterative Fold
procedure FOLD-ITER(Tree T , Nk)

while T has empty descendants do
Generate k new levels of T
fold(T )

end while
end procedure

By Theorem 5.1, at each iteration i a new tree with
height ik where Tik =ik−d T is created. A FSM is generated
when T has no empty descendants remaining, which is to
say leaf nodes that do not point back into the tree, and
therefore, still have branches to be explored.

Finally, there is one last optimization to add. This
algorithm can be parallelized by processing each subtree
separately. This requires a theorem slightly more general
than the last one. Theorem 5.1 states that running foldd(Tk)
is equivalent to running foldd(T ) for up to k − d levels.
Next we want to show that this is true for running foldd on
any subtree of T .

Theorem 5.2. Let T be an evaluation tree for M , where
D < T , and Dk is D evaluated out to depth k. Then

foldd(Dk) =k−d foldd(D). Furthermore, T is still equiv-
alent.

Proof. The first part follows immediately from Theorem 5.1.
For the second part, let D be the ith child of T . That is, there
is a path from T to D of i nodes. Now let TDk

be the tree
resulting from folding Dk, and let TD be the tree resulting
from folding D. Every subtree in TDk

and TD that do not
include D or Dk are clearly equivalent, so the only subtrees
left are the ancestors of D. Let PD be D’s parent and PDk

be Dk’s parent, then PD
Si→ D. Clearly PDk

=N PD, and
Sj(PDk

) =k−d Sj(PD) for j 6= i, and by the last theorem
Dk =k−d D. Therefore PDk

=k−d+1 PD. By induction, all
of the ancestors of D are equivalent, therefore TDk

=k−d+i

TD.

With Theorem 5.2 it is possible to process each tree
separately and the final tree will still be equivalent.

The ability to divide the tree into smaller subtrees is very
conducive to an implementation technique which further
speeds the computation along; with this easy division, we
can now pass off the subtrees to a distributed computing
environment. By spreading the load of the computation over
multiple cores and multiple servers, we have been able to
explore trees with more than 50 states in less than a minute
[19].

6. Future Work

In following work, we plan to explore the following
paths:

• Detailing the required comparison depth.
Currently, the confidence number is just a number
with no weight of real-world application behind it.
One user may define a comparison depth of 20 as
sufficient for a critical system, while another user
may require a comparison depth of 100 for the same
system. Future work will attempt to provide some
baseline numbers to be used for this purpose.

• Methods for implementing this algorithm that in-
crease speed.
The translation from mathematical notation to a pro-
gramming language is not always efficient. We are
exploring methods for implementing the theorems
presented here that result in reduced time or comput-
ing cycle usage. We are also considering customized
hardware to increase the speed of processing.

• Functional testing on simulated FSMs.
Preliminary usage testing has been performed on this
system, but further testing and abuse is required to
ensure the complete veracity of our implementation.

• Methods for broadly assigning meaning to parts of
the FSM.
The theorems detailed here bring us from a tree to
a state machine. However, a state machine is still
fairly unreadable to a human without the additional
information about what internal inputs, outputs, and
state transitions relate external impacts.
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Other work that may be of interest that builds upon this
work includes:

• Remove the assumptions about the lack of memory
in the IC.
One of the initial assumptions for this work was–
“An isolated state machine ... the FSM cannot be
connected to any sort of non-volatile memory.” The
reason for this assumption was that the inclusion
of memory creates a possible number of inputs as
large as the bits in the memory; this increased the
complexity of the processing enormously. However,
through use of distributed or cloud computing, an
exploration of this may become feasible.

• Breadth-first exploration.
We have been working from the assumption that the
tree will be parsed in a breadth-first manner. In the
general case, this has been proven to be the most
efficient. However, there may be edge cases in which
another tree exploration method may be desired or
needed.

7. Conclusion

The above method demonstrates that given an isolated
state machine with a reset capability, we can model the
machine using a tree framework which allows for machine
to machine comparisons and the comparison of states within
the machine to find an optimal representation. Through this
method it is possible to take a state machine-based IC and,
using only the standard input and output pins, re-discover
the original FSM. Consequently, we can determine if the in-
silicon FSM matches the designed FSM, or rediscover the
functionality of an unknown IC. Both capabilities provide a
non-destructive means of validation for security purposes.
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