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Microclimate and Nest-Site Selection in Micronesian Kingfishers1

Dylan C. Kesler2,3 and Susan M. Haig3

Abstract: We studied the relationship between microclimate and nest-site selec-
tion in the Pohnpei Micronesian Kingfisher (Todiramphus cinnamominus reichen-
bachii ) which excavates nest cavities from the mudlike nest structures of arboreal
termites (Nasutitermes sp.) or termitaria. Mean daily high temperatures at termi-
taria were cooler and daily low temperatures were warmer than at random sites
in the forest. Results also indicate that termitaria provided insulation from tem-
perature extremes, and that temperatures inside termitaria were within the ther-
moneutral zone of Micronesian Kingfishers more often than those outside. No
differences were identified in temperatures at sites where nest termitaria and
nonnest termitaria occurred or among the insulation properties of used and
unused termitaria. These results suggest that although termitaria provide insula-
tion from thermal extremes and a metabolically less stressful microclimate, king-
fishers did not select from among available termitaria based on their thermal
properties. Our findings are relevant to conservation efforts for the critically
endangered Guam Micronesian Kingfisher (T. c. cinnamominus) which is extinct
in the wild and exists only as a captive population. Captive breeding facilities
should provide aviaries with daily ambient temperatures ranging from 22.06 �C
to 28.05 �C to reduce microclimate-associated metabolic stress and to replicate
microclimates used by wild Micronesian Kingfishers.

During nesting, birds employ a broad
range of nest-site selection strategies to re-
duce environmental influences on survival
and reproductive success (Ricklefs 1969, Aus-
tin 1974, Martin 1992, van Riper et al. 1993,

With and Webb 1993, Gloutney and Clark
1997, Sheldon and Winkler 1999, Wiebe
2001, Reid et al. 2002). One strategy includes
the selection of nest sites in microclimates
that reduce metabolic costs to incubating
adults (Gloutney et al. 1996, Williams 1996,
Thomson et al. 1998) and protect eggs and
chicks from mortality and developmental
problems (Quinney et al. 1986). Even in gen-
erally mild regions, where benefits of micro-
climate selection are not as intuitively
apparent, nest-site selection has been linked
to microclimate, exposure to sunlight, pre-
vailing wind, and moisture (van Riper et al.
1993).

Micronesian Kingfishers (Todiramphus cin-
namominus) are a tropical species with natural
history characteristics that may render them
susceptible to thermal stresses. Like other
members of the order Coraciiformes, Micro-
nesian Kingfishers hatch as altricial chicks
and lack the downy stage of development
present in other orders (Fry and Fry 1992).
Approximately 3 weeks posthatch, nestlings
grow feather-spines that unfurl into feathers.
Down feathers provide young in other species

Pacific Science (2005), vol. 59, no. 4:499–508
Work of the U.S. Government
Not under copyright

1 The U.S. Geological Survey Forest and Rangeland
Ecosystem Science Center, U.S. Fish and Wildlife Ser-
vice, Conservation Endowment Fund of the American
Zoo and Aquarium Association, National Geographic So-
ciety, Disney’s Animal Kingdom, St. Louis Zoo Field Re-
search for Conservation Fund, Brookfield Zoo, Friends
of the National Zoo, Micronesian Kingfisher Species
Survival Fund, Riverbanks Zoo, and Milwaukee County
Zoo provided financial backing for this project. Manu-
script accepted 27 December 2004.

2 (Corresponding author), Department of Fisheries
and Wildlife, Oregon State University, Corvallis, Oregon
97331 (phone: 541-760-4433; fax: 541-758-7761; e-mail:
dylan_kesler@usgs.gov).

3 U.S. Geological Survey Forest and Rangeland Eco-
system Science Center, 3200 SW Jefferson Way, Corval-
lis, Oregon 97331.



with insulation for the maintenance of body
heat, but because young Micronesian King-
fishers are covered by only skin or feather-
spines during the first several weeks of
growth, they may be more susceptible to
thermal stresses and require more parental
attention than species with downy chicks.

Results from previous studies indicate that
microclimate has the potential to affect re-
productive success and nest-site selection in
Micronesian Kingfishers. We assessed micro-
climate conditions provided to captive Guam
subspecies of Micronesian Kingfisher (T. c.
cinnamominus) by evaluating temperatures in
aviaries during the 2002 breeding season
(Kesler and Haig 2004). Results showed that
birds in captive facilities with warmer micro-
climates were more likely to breed than those
in cooler facilities, and that captive aviaries
were cooler than areas used by wild Micro-
nesian Kingfishers for nesting. In addition,
previous studies of nest-site selection in both
wild Guam Micronesian Kingfishers (Mar-
shall 1989) and Pohnpei Micronesian King-
fishers (T. c. reichenbachii ) (Kesler and Haig
2005), indicated that the birds selected nests
in portions of the rain forest with more con-
tiguous canopy cover, which might limit the
heat gain from exposure to sunlight during
the daytime and reduce the amount of heat
radiated at night.

Together, a taxonomic predisposition to
thermal stresses while nesting, a relation-
ship between reproductive success and tem-
peratures in captivity, and selection of dense
vegetation for nesting indicate that wild
kingfishers may benefit from the selection
of nest sites in thermally amenable micro-
climates. This study was conducted to ascer-
tain whether microclimate temperatures
affect nest-site selection in wild Micronesian
Kingfishers on the island of Pohnpei. Pohn-
pei Micronesian Kingfishers construct nest
cavities in the mudlike nest structures of ar-
boreal termites (Nasutitermes sp.) or termita-
ria. We used observations from automated
temperature loggers to compare the insula-
tion properties of nest and nonnest termi-
taria, and the microclimate characteristics of
used termitaria, unused termitaria, and ran-
dom locations in the Pohnpei rain forest. To

relate the importance of observed tempera-
tures to kingfisher physiology, results were
compared with the thermoneutral zone of
adult Micronesian Kingfishers. The thermo-
neutral zone includes the range of tempera-
tures not requiring metabolic energy for
thermoregulation (Calder and King 1974).

Results from this study are intended for
use in conservation efforts for the endangered
Guam Micronesian Kingfisher, which is ex-
tinct in the wild and only exists as a captive
population in U.S. zoos (Haig and Ballou
1995, Haig et al. 1995, Bahner et al. 1998,
Kesler and Haig 2004). The birds were listed
as endangered under the U.S. Endangered
Species Act in 1984 following precipitous
declines caused by introduced brown trees
snakes (Boiga irregularis) (U.S. Fish and
Wildlife Service 1984, Savage 1987). Despite
nearly 20 yr of effort, attempts to breed cap-
tive kingfishers have met with limited success,
in part because so little information was avail-
able about their behavior in the wild and
the conditions they encountered in Guam
forests.

Study Area

Research was conducted on the island of
Pohnpei, Federated States of Micronesia
(6.88� N, 158.22� E). Pohnpei is a relatively
circular volcanic island with an approximate
diameter of 20 km circumscribing the highest
peak (nearly 800 m elevation) in the Microne-
sian region. Coastal lowlands and mangrove
swamps surround the inner mountain range,
which is characterized by dense tropical rain
forests. We selected two study areas in Nett
(6.95� N, 158.21� E) and Sokehs municipal-
ities (6.91� N, 158.16� E) that were 6 km
apart and occurred at approximately 75 m
elevation. Vegetation on the study areas in-
cluded early succession and agroforest, which
was characterized by lower-canopy (2 to 20 m
high) hibiscus (Hibiscus tiliaceus); banana (Musa
sapientum); coconut (Cocos nucifera); bread-
fruit (Artocarpus altilis); and sakau (Piper me-
thysticum). Mature forests had a higher canopy
(25–30 m high) and were dominated by mango
(Mangifera indica); dohng (Campnosperma bre-
vipetiolata); sadak (Elaeocarpus carolinensis);
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karara (Myristica insularis); ais (Parinari laur-
ina); and tree ferns (Cyathea spp.) (Mueller-
Dombois and Fosberg 1998, Buden 2000).

materials and methods

Temperature Metrics

Four biologically relevant thermal metrics
were used to test for differences in tempera-
tures inside and outside termitaria, between
microclimates where nest and nonnest termi-
taria occur, and between locations where ter-
mitaria do and do not occur. The first three
metrics were based on temperatures and in-
clude mean daily high and low temperatures
(Tmax and Tmin, respectively) and temperature
stability (arcsine square root transformed per-
centage coefficients of variation; Tflux). The
fourth metric incorporated kingfisher physi-
ology by comparing temperatures with the
thermoneutral zone of adult Micronesian
Kingfishers, which includes the range of
temperatures requiring little or no metabolic
energy for thermoregulation (Calder and
King 1974, Robbins 1993). The upper limit
of the thermoneutral zone, or the upper
critical temperature, has a mean of 38G
3 �C for most avian species (Aschoff 1981).
We estimated the lower limit of the zone, or
the lower critical temperature (Tlc), for adult
Micronesian Kingfishers to be 23.8 �C using
a formula for inactive nonpasserine birds
(Robbins 1993):

Tlc ¼ Tb � 38:3X 0:31

where Tb is body temperature (estimated as
39.6 �C; King and Farner 1961), and X is
mean body weight (58 g [unpubl. data]). In
accordance with Robbins (1993), no adjust-
ments were made to the lower critical temper-
ature to account for energetic costs associated
with incubation because of the kingfishers’
small one- or two-egg clutch, which averages
28% mean adult weight. In Pohnpei, ambient
air temperature is unlikely to go above the
kingfisher thermoneutral zone (<1% daily
high temperatures [National Oceanic and At-
mospheric Administration (NOAA) 2001])
but quite likely to fall below (73% of hourly
observations [NOAA 2001]), so the propor-

tion of observations below the lower critical
temperature (% below Tlc) was the fourth met-
ric compared among site types.

Field Techniques

Termitaria available to Micronesian King-
fishers were located between May and Sep-
tember 2000. We traversed parallel transects
approximately 10 m apart in forested portions
of the study areas using aerial photographs,
compasses, and global positioning systems
(Garmin, Ltd., Olathe, Kansas) to ensure
accuracy. Radio-marked (Holohil Systems,
Ltd., Ottawa, Ontario, Canada) Micronesian
Kingfishers (n ¼ 26) were subsequently fol-
lowed to identify termitaria used for nesting.
In the 43.4-ha search area, 21 nest and 234
nonnest termitaria were located.

Temperature sampling was conducted dur-
ing two sessions. The thermal characteristics
of microclimates surrounding termitaria were
sampled during the kingfisher breeding sea-
son between 6 and 16 September 2001. Tem-
peratures were recorded at nest and nonnest
termitaria and at random sites in the forest
using temperature loggers (StowAway, Onset
Computer Corp., Pocasset, Massachusetts).
Loggers were placed immediately below (<5
cm) nest termitaria (n ¼ 18) on both study
areas, at 19 nonnest termitaria randomly se-
lected from a candidate list of 107 termitaria
of enough volume for kingfisher use (>14
liters in volume [Kesler and Haig 2005]),
and at 21 forested locations without termita-
ria. Nontermitaria locations were randomly
selected from a 1-m grid overlaid on the
census search areas with a geographic in-
formation system (GIS) (ArcView, ESRI,
Redlands, California) database. Loggers were
placed at a height and orientation randomly
selected from the height and orientation dis-
tributions of nest termitaria.

Temperatures fluctuate throughout the day
in Pohnpei, but daily means are extremely sta-
ble both within and among years (mean daily
temperature ¼ 27:2G 0:99 �C SD [NOAA
2001]) and suggest that even short-duration
monitoring is likely representative of overall
thermal patterns. Thus, loggers were set to
record ambient temperatures at 6-min inter-
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vals during each of three 3-day assessment
periods starting at 1900 hr on 6, 10, and 14
September 2001.

To determine how temperatures inside
termitaria differed from those in the sur-
rounding microhabitat, we also conducted
an evaluation of termitaria insulation charac-
teristics. We initiated sampling after the
2002 breeding season to reduce disturbance
to nesting birds. Temperatures were recorded
by pairs of loggers placed inside and outside
18 termitaria on the Nett study area between
27 December 2002 and 8 January 2003. We
previously observed nesting kingfishers in
twelve of the termitaria, and six were large
enough to contain nest cavities (>14 liters
[Kesler and Haig 2005]). We inserted one
temperature logger 15 cm into each sample
termitarium (approximate kingfisher nest
chamber depth [Kesler and Haig 2005]), and
another logger was placed 5 cm below each of
the termitaria. The pairs of loggers were set
to record temperatures simultaneously, every
6 min and for 48-hr periods at each sample
site. No comparison could be made between
successful and unsuccessful nests because
Pohnpei residents, who destroyed nests with
machetes, caused the only nest mortality that
we observed during five field seasons (Kesler
and Haig 2005).

Statistical Analysis

Temperature characteristics at nest, nonnest,
and nontermitarium sites were assessed using
models with variables for site type and ob-
servation period. We used repeated measures
analysis of variance (RANOVA; SAS Analyst
[SAS Institute 1999]) to evaluate models for
Tmax and Tmin and a mixed models analysis of
variance (PROCMIX [SAS Institute 1999]) to
assess Tflux and % below Tlc. Estimates for least
squares means were used in two orthogonal
linear contrasts (Ramsey and Schafer 1997)
to compare microhabitat thermal characteris-
tics of nest with nonnest termitaria, and all
termitaria with nontermitaria sites. Repeated
measures models were fitted using compound
symmetry (CS), unstructured (U), and first-
order autoregressive (FOA) covariance struc-
tures, and results are reported for the model

with the lowest Akaike Information Criteria
value (AIC) (Burnham and Anderson 1998).

Thermal regimes inside termitaria were
compared with those outside with RANOVA
for Tmax and Tmin, and a paired t-test for Tflux

and % below Tlc. Similarly, we compared the
insulation properties of nest and nonnest
termitaria by evaluating the difference in
thermal metrics recorded inside and outside
each termitarium with RANOVA for Tmax

and Tmin and two sample t-tests for Tflux and
% below Tlc. Parameter estimates are reported
as meansG standard error (SE) unless other-
wise noted, and differences are considered
statistically significant at a a 0:05. All vari-
ables were treated separately and 95% confi-
dence intervals (CI) are presented.

results

Temperatures logged during the breeding
season showed similar daily patterns (Figure
1). Beginning shortly after sunrise (approxi-
mately 0700 hr), temperatures climbed to a
midday peak at approximately 1000 hr. Mean
daily high temperatures during the breed-
ing season (29.4G 1.9 �C) remained below
the upper critical temperature (approximately
38G 3 �C). Afternoon temperatures fluctu-
ated and began to fall at approximately 1500
hours. Nocturnal temperatures fell to a mean
low of 22.8G 0.7 �C. The low temperature
trough lasted from approximately 0000 to
0730 hours (25G 5% for each 24-hr period).

All four thermal metrics differed between
sites with termitaria and random forested
sites without termitaria (Table 1). Contrasts
of least square means showed that mean Tmax

was 0.93 �C lower at termitaria (CS, F ¼ 7:7;
df ¼ 1,54; P ¼ 0:007; CI 0.26–1.60 �C) than
at sites where termitaria did not occur.
Mean Tmin at sites with termitaria was sig-
nificantly warmer (FOA, F ¼ 56.3; df ¼ 1,86;
P < 0:0001) than at nontermitaria sites, but
the estimated difference in magnitude was
small (0.20 �C; CI 0.10–0.29 �C). Temper-
atures fluctuated less where termitaria oc-
curred than where termitaria did not occur
(back transformed Tflux 0.12% higher in non-
termitaria; F ¼ 11:4; df ¼ 1,54; P ¼ 0:001;
CI < 0.01–0.39%). Similarly, the proportion
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of time when temperatures were below the
lower critical temperature was estimated to
be 3.4% greater (F ¼ 5:8; df ¼ 1,54; P ¼
0:019; CI 0.5–6.3%) in nontermitaria mi-
croclimates than in microclimates with ter-
mitaria. No differences were identified in
microhabitat temperatures at nest and non-
nest termitaria for any metric.

Differences between temperatures inside
and outside termitaria were identified for all
four thermal metrics, illustrating that the
termitarium itself provides insulation and a
buffer from environmental extremes. Tem-
peratures observed outside termitaria had a
mean Tmax 0.55 �C warmer (CS, F ¼ 5:0;
df ¼ 1,89; P ¼ 0:03; CI 0.06–1.06 �C), Tmin

1.00 �C cooler (CS, F ¼ 26:8; df ¼ 1,89;
P < 0:001; CI 0.62–1.38 �C), back trans-
formed Tflux 0.25% less stable (P < 0:001; CI
0.09–0.49%), and temperatures were below

Figure 1. Lower critical temperature of adult Pohnpei Micronesian Kingfishers and mean hourly temperatures from
microhabitats at 18 nest termitaria, 19 nonnest termitaria, and 21 random forest locations on Pohnpei in September
2001.

TABLE 1

Least Squares Means and SE for Estimated
Temperatures in Microhabitats Surrounding Pohnpei

Micronesian Kingfisher Nest Termitaria, Nonnest
Termitaria, and Forest Locations without Termitaria on

Pohnpei in September 2001

Thermal
Metric

Nest
Termitaria

(n ¼ 18)

Nonnest
Termitaria

(n ¼ 19)
Forest

(n ¼ 21)

Tmaxð�CÞ 28.05 (0.41) 27.71 (0.40) 28.70 (0.39)
Tminð�CÞ 22.86 (0.11) 22.91 (0.11) 22.72 (0.11)
Tfluxð%Þ a 7.32 (0.02) 6.57 (0.02) 8.26 (0.02)
% below Tlc

b 28.7 (2.6) 27.3 (2.6) 31.7 (2.5)

a Arcsine square root transformed for analysis and back trans-
formed for presentation as CV.

b Proportion of 6-min temperature observations below the
lower critical temperature for adult Micronesian Kingfishers.
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the Tlc 5.7% more often (P ¼ 0:02; CI 1–
10%) than temperatures inside termitaria.
When compared with those outside termita-
ria, temperatures inside were warmer during
the coolest portions of the day (from 1612 to
0848 hours) and cooler during 7.3 daylight
hours (Figure 2). In contrast, no differences
were found for any of the four metrics when
comparing temperature disparities at nest and
nonnest termitaria.

discussion

Nests in locations with temperatures closely
aligned to the thermoneutral zone are likely
to conserve metabolic energy and thereby
benefit fitness and survival (White and Kin-
ney 1974). During the breeding season, tem-
peratures at sites where termitaria occurred
were within the thermoneutral zone of Mi-
cronesian Kingfishers more often than at sites

where termitaria did not occur. Arboreal ter-
mites tend to construct termitaria in forested
locations with greater canopy development
and overhead vegetative cover (Marshall
1989, Kesler 2002, Kesler and Haig 2004,
2005). This additional cover might reduce
both the heat gain from exposure to sunlight
during the daytime and the amount of heat
radiated at night. The effects of heat gain
from sunlight and radiative cover have been
investigated previously (e.g., Calder 1974,
Campbell 1977, Walsberg 1981, Wiebe and
Martin 1998). Calder (1973) estimated differ-
ences of 1–6 �C in the temperatures of Anna’s
Hummingbird (Calypte anna) nests with and
without radiative cover, and Gloutney and
Clark (1997) suggested that vegetative cover
kept Blue-winged Teal (Anas discors) and Mal-
lard (Anas platyrhynchos) nests cooler during
daylight hours.

Convective heat losses from air movement

Figure 2. Mean difference in temperatures outside and inside termitaria on Pohnpei in December 2002. Positive val-
ues indicate warmer temperatures inside termitaria and negative values indicate cooler termitaria temperatures.
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and evaporative heat losses associated with
moisture are additional factors that may influ-
ence thermoregulation (Ricklefs and Hains-
worth 1969, McArthur 1987, van Riper et al.
1993, With and Webb 1993, Gloutney and
Clark 1997). The small entrance and cavity
structure of Micronesian Kingfisher nests
(Kesler and Haig 2005) suggest that they
are probably protected from convective heat
losses, but losses associated with moisture
may be extremely important on Pohnpei,
which receives a mean yearly rainfall of 473
cm (NOAA 2001). Arboreal termites likely
select the driest of sites for termitarium con-
struction because the mudlike composition
of their nests makes them susceptible to rain.
Therefore, Micronesian Kingfishers may de-
rive benefit from the combined temperature
and moisture properties of microclimates se-
lected first by termites and then secondarily
by the kingfishers.

The estimated temperature differences be-
tween microhabitat types were small (<1 �C),
and temperatures at all sample locations dur-
ing the breeding season did not differ drasti-
cally from the thermoneutral zone for adult
kingfishers. However, even slight differences
in thermal regime may be extremely impor-
tant to nestlings. Adult kingfishers spend little
time brooding nestlings, whose plumage is
relatively undeveloped until approximately
3 weeks posthatch (D.C.K., unpubl. data).
This suggests that nestlings are likely to have
an elevated lower critical temperature when
compared with adults and therefore derive
greater benefit from nests providing insu-
lation, located in warmer microclimates, or
sheltered from moisture and the associated
evaporative heat losses. In addition, statisti-
cally significant differences of less than a
degree have been observed between suc-
cessful, unused, and unsuccessful Mountain
Chickadee (Parus gambeli ) nest boxes (Wa-
chob 1996).

The amount of metabolic energy expended
by nesting Micronesian Kingfishers for ther-
moregulation and incubation is influenced by
both the thermodynamic properties of the
termitarium in which a nest cavity is located
and the thermal regime of the site where
the termitarium occurs. Differences in tem-

peratures observed inside and outside termi-
taria demonstrate that termitaria serve as a
buffer from thermal extremes. These insula-
tion properties, coupled with the occurrence
of termitaria at sites with thermal regimes
closely aligned to the kingfisher thermoneu-
tral zone, suggest that the use of termitaria
benefits Micronesian Kingfishers. However,
our failure to detect a difference in insulation
properties and thermal regimes of termitaria
used for nesting and those that were not
suggests that Micronesian Kingfishers do not
select from among termitaria based on ther-
mal characteristics.

Differences among sites should be great
enough to alter survival or reproductive suc-
cess for microhabitat thermal characteristics
to affect nest-site selection. Therefore, the
apparent lack of temperature consideration
when selecting from among termitaria may
be related to the generally suitable tempera-
ture range of sites where termitaria occur
or to the trade-offs associated with selecting
nest sites based on thermal characteristics.
Microhabitat temperature at nest and nonnest
termitaria did not extend above the upper
critical temperature, and although it dipped
below the lower critical temperature for 32%
of the observations the magnitude was only
1.4 �C and 1.3 �C, respectively (Table 1).
The proportion of time that temperatures
were below the lower critical temperature at
termitaria is similar to the 25% found for
Mallards but contrasts with the 50% observed
for Blue-winged Teal (Gloutney and Clark
1997). A comparison of temperatures at nest
and nearby nonnest sites for these species
also resulted in nonsignificant differences in
ambient air temperature. Although there
have been numerous investigations of micro-
climate in other cavity nesting species (e.g.,
Ricklefs and Hainsworth 1969, Austin 1974,
Wachob 1996, Wiebe 2001), we found none
that compared observed temperatures with
the thermoneutral zone.

The entire population of the Guam sub-
species of Micronesian Kingfisher currently
exists in captive breeding facilities. However,
observers noted that the birds nested in
both termitaria and soft-wooded trees before
their extirpation from Guam ( Jenkins 1983,
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Marshall 1989). Although we were unable to
evaluate difference between the thermal char-
acteristics of nest cavities constructed in wood
and those in termitaria, cavities made in wood
by Acorn Woodpeckers, Melanerpes formicivo-
rus, and Northern Flickers, Colaptes auratus,
have also been shown to provide protections
from solar heat gain and convective and
radiative heat losses (Hooge et al. 1999,
Wiebe 2001). Thus, historic Guam Microne-
sian Kingfisher nest sites probably also pro-
vided thermal buffering, regardless of the
substrate in which they occurred.

Our results showed that the wild subspe-
cies of Micronesian Kingfisher on Pohnpei
was rarely exposed to temperatures outside
its thermoneutral zone while nesting and
that birds did not select from among available
termitaria based on site thermal character.
Thus, we suggest that captive facilities at-
tempting to propagate Micronesian King-
fishers for conservation purposes should
closely match the ambient temperatures de-
scribed here (ranging from 22.06 to 28.05
�C). Furthermore, we suggest that substrates
with adequate insulation properties be pro-
vided to captive birds for nest-cavity excava-
tion. With regard to conservation planning
for a reintroduction of Micronesian King-
fishers to Guam (U.S. Fish and Wildlife Ser-
vice 2004), and Pacific island kingfishers in
general, we suggest that appropriate measures
be taken to avoid metabolic stresses associ-
ated with microclimate by providing suitable
nesting habitats with ambient temperatures
falling close to the thermoneutral zone.
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