SCIENTIFIC NOTE

Nontarget Arthropods Captured in Cue-lure Baited Bucket Traps at Area-Wide Pest Management Implementation Sites in Kamuela and Kula, Hawaiian Islands

Grant K. Uchida¹, Donald O. McInnis¹, Roger I. Vargas², Bernarr R. Kumashiro³ and Eric Jang²

¹USDA-ARS, Pacific Basin Agricultural Research Center, 2727 Woodlawn Drive, Honolulu, HI 96822, USA. ²USDA-ARS-PBARC, Stainback Highway, P.O. Box 4459, Hilo, HI 96720, USA. ³Hawaii Department of Agriculture, Division of Plant Industry, Plant Pest Control Branch, 1428 South King Street, Honolulu, HI 96814, USA

Introduction

An area-wide integrated pest management (AWPM) program began in the Hawaiian Islands in October, 1999 to demonstrate the feasibility of suppressing populations of three economically important species of fruit flies (oriental fruit fly (Bactrocera dorsalis) (Hendel), melon fly (Bactrocera cucurbitae) (Coquillett), and Mediterranean fruit fly (Ceratitis capitata) (Wiedemann)) (Faust and Chandler 1998; Chandler and Faust 1998). These species of fruit flies were accidentally introduced in the Hawaiian Islands (Back and Pemberton 1917, 1918; van Zwaluwenberg 1947; and Vargas and Nishida 1985). Melon fly population suppression with existing technologies (Steiner et al. 1970; Liquido 1991; McInnis et al. 1994; Purcell and Messing 1996; Peck and McQuate 2000; Vargas et al. 2000; Vargas et al. 2001) began in January 2002. Male annihilation using cue-lure and a toxicant (Cunningham and Steiner 1972) is one of the technologies being employed to suppress male melon flies.

Past concerns in Hawaii about the impact of fruit fly lures on nontarget species (USDA-APHIS 1985), especially endemic Hawaiian species, have prompted research on methyl eugenol and protein hydrolysate bait (Asquith and Messing 1992, Asquith and Kido 1994, Kido et. al 1996, Asquith and Burny 1998, and Howarth and Howarth 2000). In a preliminary study by Loope and Medeiros (1992), nontarget insects, including native Hawaiian Drosophila, were captured in cue-lure traps.

The objective of this study was to collect, identify, and categorize field-collected nontarget arthropods captured in cue-lure baited bucket traps in the AWPM implementation sites.

Materials and Methods

Each bucket trap (Uchida et al. 1996) was loaded with 2 ml of cue-lure on a wick and a toxicant (DDVP vapor tape; Hercon Environmental Company, Emigsville, PA 17318-0467; 10.75 % active ingredients) attached inside each trap. Traps were serviced at 2 to 4 week intervals. Captured arthropods were collected in a paper bag, separated from melon flies, stored in alcohol, and prepared for identification. Identifications were made to the lowest taxonomic level possible by the senior (G. K. U.) and fourth (B. R. K.) authors. Ten traps were placed throughout each AWPM implementation site in Kula, Maui Island and Kamuela, Hawaii Island (Figs. 1 & 2) adjacent cultivated and uncultivated melon fly host plants in and around farms, where other bucket traps were in place for monitoring and suppression of male melon flies. Implementation sites in Kula and Kamuela were divided into a forty- and forty-two-block grid, respectively, with each block one km² in size. The
Kula (244-1158 m elevation) and Kamuela sites (695-1088 m elevation) are disturbed habitats consisting of farms, pastures, houses, and nonnative forests. Traps were sampled from November 7, 2001 to January 15, 2002 at Kamuela and November 21, 2001 to January 23, 2002 at Kula.

Results and Discussion

In Table 1, identified specimens are grouped by resident status (Nishida 2002) as adventive (Nishida 2002), endemic, indigenous (Eldredge and Miller 1995), beneficial (Borror et al. 1976), or purposely introduced (Funasaki et al. 1988). The known distributions of captured species are provided (Nishida 2002). The feeding habit groupings used are saprophagous, phytophagous, and zoophagous (Borror et al. 1976).

The nontarget taxa captured at both sites were representative of four classes, ten orders, 42 families, and 39 determined species (Table 1). Traps at the Kula site captured about 1.1 individuals per day (total = 70 specimens), whereas traps in Kamuela captured about 34.3 individuals per day (total = 2,368 specimens). On a per day basis, cue-lure baited traps captured relatively low numbers of individuals, but over a period of time this number increased many fold for some species. But, as with methyl eugenol baited traps targeting oriental fruit flies, it is necessary to lower the environmental risk by reducing the number of captured species (Howarth and Howarth 2000).

Among all captured arthropods at both sites, there were 36 adventive, ten endemic, zero indigenous, three purposely introduced, zero beneficial, and 33 undetermined species. Kamuela and Kula sites are highly altered environments with very few endemic plants. The low trap catch of endemic species probably reflects a reduced density of native arthropods due to the mixed agriculture-residential nature of the sites, the prevalence of invasive weeds, and the distance from any large areas of native habitat. Endemic species were 2.4% of the total captured.
Among the total number of captured species at both sites with known feeding habits, 57.3% were saprophagous, 24.4% zoophagous, and 9.8% phytophagous; and in terms of the total number of captured individuals at both sites, 92.5% were saprophagous, 5.7% phytophagous, and 1.8% zoophagous. The high percentage of saprophagous species and individuals indicated that captured rotting insects were attractive to nontarget insects. Loope and Medeiros (1992) hypothesized that captured rotting insects in methyl eugenol traps may have contributed to the attraction of nontarget insects and recommended that oriental fruit flies be excluded from traps in future experiments. Kido et al. (1996) found that insects in riparian stream habitats were attracted to methyl eugenol, but there was a secondary attraction to dead captured insects. Researchers have added ethylene glycol to traps as a preservative to remove the influence of rotting insects and determined that protein hydrolysate bait and methyl eugenol were attractive to nontarget insects (Asquith and Kido 1994, Asquith and Messing 1992, Asquith and Burny 1998, and Howarth and Howarth 2002). However, G. K. U. (unpublished data) found evidence that ethylene glycol also is attractive to nontarget insects and discovered mineral oil to be a better substitute.

Attraction of nontarget species to cue-lure baited traps shows a need for future improvements in trap design to reduce the number of captured arthropods and mitigate the effect of rotting insects. A proposed solution to reduce the catch of nontarget species is to use open bottomed male annihilation devices or monitoring traps with mineral oil to suppress the rotting of both target and nontarget insects.
Table 1. Nontarget species of arthropods captured in cue-lure baited fruit fly traps in the AIPM implementation sites on the islands of Maui (Kula) and Hawaii (Kamuela), November, 2001–January, 2002.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>Order</th>
<th>Family</th>
<th>Species</th>
<th>Residency status</th>
<th>Feeding habit</th>
<th>Known Hawaiian distribution</th>
<th>No. captured</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARACHNIDA</td>
<td></td>
<td>Araneae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. A?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. B?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. C?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spp.?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Salticidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philippus audax (Hentz)</td>
<td>A</td>
<td>Z</td>
<td>K, O, M, H</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp.?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spp.?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ELLIPURA</td>
<td></td>
<td>Collembola</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp.?</td>
<td>?</td>
<td>S</td>
<td>M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INSECTA</td>
<td></td>
<td>Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anobiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ozognathus sp.</td>
<td>A</td>
<td>S</td>
<td>O, M</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>poss. exiguis (Gorham)</td>
<td>E</td>
<td>S</td>
<td>O, M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bruchidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthoscelides macrophthalmus (Schaeffer)</td>
<td>A</td>
<td>P</td>
<td>O, M</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coccinellidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coeloephora inaequalis (Fabricius)</td>
<td>PI</td>
<td>Z</td>
<td>K, O, Mo, L, M, H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. A? (larvae)</td>
<td>?</td>
<td>Z</td>
<td>M</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. B?</td>
<td>?</td>
<td>Z</td>
<td>M</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telsimia nitida Chapin</td>
<td>PI</td>
<td>Z</td>
<td>K, O, Mo, L, M, H</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mycetophagidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typhaea sterncorea (L.)</td>
<td>A</td>
<td>S</td>
<td>K, O, M, H</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitidulidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpophilus hemipterus (L.)</td>
<td>A</td>
<td>S</td>
<td>K, O, Mo, L, M,</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. mutilatus Erichson</td>
<td>A</td>
<td>S</td>
<td>O</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nesoperinus scottianus Sharp</td>
<td>E</td>
<td>S</td>
<td>H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scolytidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xylosandrus compactus (Eichhoff)</td>
<td>A</td>
<td>S</td>
<td>K, O, Mo, L, M, H</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. A?</td>
<td>?</td>
<td>Z</td>
<td>H</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sp. B?</td>
<td>?</td>
<td>Z</td>
<td>M</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Diptera

Anthomyiidae

Delia echinata (Seguy)
Species: A?
Habit: ?
Known Hawaiian distribution: M, H
No. captured: 7 2 9

Culicidae

sp.?
Species: A
Habit: Z
Known Hawaiian distribution: M
No. captured: 3 0 3

Drosophilidae

Chymomyza procnemis (Williston)
Species: A
Habit: S
Known Hawaiian distribution: O, Mo, L, M, H
No. captured: 4 0 4

Chymomyza ananassae Doleschall
Species: A
Habit: S
Known Hawaiian distribution: K, O, H
No. captured: 11 5 16

D. hydei Sturtevant
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 3 0 3

D. (Sophophora) melanogaster Meigen
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, Kh, M, H
No. captured: 10 3 13

D. (Sophophora) simulans Sturtevant
Species: ?
Habit: S
Known Hawaiian distribution: M
No. captured: 4 0 4

D. sp.?
Species: ?
Habit: S
Known Hawaiian distribution: M
No. captured: 2 0 2

Lonchaeidae

Lamprolonchaea metatarsata (Kertesz)
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, M, H
No. captured: 1 0 1

Lonchaea polita Say
Species: A
Habit: S
Known Hawaiian distribution: O, M, H
No. captured: 2 0 2

L. striatifrons Malloch
Species: A
Habit: S
Known Hawaiian distribution: Mo, L, M, H
No. captured: 7 0 7

Micropezidae

sp.?
Species: A
Habit: S
Known Hawaiian distribution: M
No. captured: 1 0 1

Milichiidae

Desmometopa inaurata Lamb
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 1936 1 1937

Muscidae

Atherigona orientalis Schiner
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 3 1 4

Musca domestica Linnaeus
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 1 1 2

Mycetophilidae

spp.?
Species: ?
Habit: S
Known Hawaiian distribution: M, H
No. captured: 0 6 6

Otitidae

Euxesta annonae (Fabricius)
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 2 0 2

Notogramma cimiciforme Loew
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M,
No. captured: 3 0 3

spp.?
Species: A
Habit: S
Known Hawaiian distribution: M
No. captured: 10 0 10

Phoridae

Megaselia nr. brunneipalpata Beyer
Species: E
Habit: S
Known Hawaiian distribution: M, H
No. captured: 14 0 14

M. runs nr. heterodactyla Beyer
Species: E
Habit: S
Known Hawaiian distribution: M
No. captured: 6 0 6

M. species no. 2 (Hardy 1964)
Species: ?
Habit: ?
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 35 0 35

M. scalaris (Loew)
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, L, M, H
No. captured: 2 0 2

M. spp.?
Species: ?
Habit: S
Known Hawaiian distribution: M
No. captured: 30 0 30

Psychodidae

Psychoda alternata Say
Species: A
Habit: S
Known Hawaiian distribution: K, O, Mo, M, H
No. captured: 3 0 3
<table>
<thead>
<tr>
<th>CLASS</th>
<th>Order</th>
<th>Family</th>
<th>Residency status</th>
<th>Feeding habit</th>
<th>Known Hawaiian distribution</th>
<th>No. captured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (continued).
<table>
<thead>
<tr>
<th>CLASS</th>
<th>Order</th>
<th>Family</th>
<th>Species</th>
<th>Residency status(^1)</th>
<th>Feeding habit(^2)</th>
<th>Known Hawaiian distribution(^3)</th>
<th>No. captured Kula Kamuela Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp. A?</td>
<td>?</td>
<td>P</td>
<td>H</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp. B?</td>
<td>?</td>
<td>P</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>Psocoptera</td>
<td></td>
<td></td>
<td>sp. A?</td>
<td>?</td>
<td>S</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp. B?</td>
<td>?</td>
<td>S</td>
<td>M</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp. C?</td>
<td>?</td>
<td>S</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>Hemipsocidae</td>
<td></td>
<td></td>
<td>Hemipsocus roseus (Hagen)</td>
<td>A</td>
<td>S</td>
<td>O, L, M</td>
<td>3</td>
</tr>
<tr>
<td>Psocidae</td>
<td></td>
<td></td>
<td>Ptycta sp. A?</td>
<td>E</td>
<td>S</td>
<td>H</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ptycta sp. B?</td>
<td>E</td>
<td>S</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ptycta sp. C?</td>
<td>E</td>
<td>S</td>
<td>H</td>
<td>4</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonata</td>
<td></td>
<td></td>
<td>Subulina octona (Bruguiere)</td>
<td>A</td>
<td>S</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Residency status: E = endemic; A = adventive; PI = purposely introduced; ? = unknown.
2 Feeding habit: Z = zoophagous; P = phytophagous; S = saprophagous; ? = unknown.
3 Known Hawaiian distribution: K = Kauai Island; O = Oahu Island; M = Maui Island, Mo = Molokai Island; L = Lanai Island; Kh = Kahoolawe Island; H = Hawaii Island.
Acknowledgments

We thank Gregory J. Boyer and Albert H. Kawabata (USDA-ARS-U. S. Pacific Basin Agricultural Research Center (PBARC), Kamuela Hawaii); Jari S. Sugano, Earl Y. Fujitani, Troy I. Kawahara, and Linda K. Fujitani (University of Hawaii, Kula Experiment Station, Kula, HI); and Lester M. Klungness, Charmaine D. Sylva, and Cheryl M. Y. N. Chan (USDA-ARS-U. S. Pacific Basin Agricultural Research Center (PBARC), Hilo, Hawaii) for their assistance with this survey. Also, we thank Renato C. Bautista, Tom W. Culliney and Grant T. McQuate for their critical review of a previous version of this manuscript. Special thanks to the State of Hawaii Department of Agriculture staff for their assistance and the use of the Hawaiian arthropod collection and scientific literature.

Literature Cited

