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ABSTRACT

Beach erosion has direct consequences for Hawai'i's tourist-based economy, which

depends largely on the attraction of beautiful sandy beaches. Within the last century,

however, beaches on Oahu and Maui have been narrowed or completely lost, threatening

tourism and construction development. In order for the counties and state ofHawai'i to

implement coastal regulations to prevent infrastructure damage, it is necessary to find a

statistical methodology that accurately delineates annual erosion hazard rates specific to

Hawai'i. We compare the following erosion rate methods: end point rate (EPR), average

of rates (AOR), minimum description length (MDL),jackknifing (JK), ordinary least

squares (OLS), reweighted least squares (RLS), weighted least squares (WLS),

reweighted weighted least squares (RWLS), least absolute deviation (LAD), and

weighted least absolute deviation (WLAD). To evaluate these statistical methods, this

study determines the predictive accuracy ofvarious calculated erosion rates, including the

effects ofa priori (storm) outliers, using (1) temporally truncated data to forecast and

hindcast known shorelines, and (2) synthetic beach time series that contain noise. This

study also introduces binning of adjacent transects to identify segments of a beach that

have erosion rates that are indistinguishable. Ifmajor uncertainties of the shoreline

methodology and storms are known, WLS, RWLS, and WLAD are better methods; if

storms are not known, RWLS and WLAD are preferred. Ifboth uncertainties and storms

are not known, RLS and LAD are preferred; if storms are known, OLS, RLS, JK, and

LAD are recommended. MDL and AOR produce the most variable results. Early 20th

century topographic surveys are valuable in change rate analyses. Binning adjacent
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transects improves the signal-to-noise ratio by increasing the number of data points.

Binning also reflects long-term sand transport within a beach system.
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CHAPTER 1
INTRODUCTION

The coastal zone is one ofthe nation's greatest environmental and economic assets

(Ocean Studies Board, 1999). In Hawai'i, for example, over 60% of all jobs are related

to tourism, which depends largely on the appeal of sandy beaches. Yet widespread beach

erosion in the Hawaiian Islands threatens sand-dependent ecosystems and abutting

coastal owners (Fletcher et aI., 1997; Norcross-Nu'u and Abbott, 2005; Rooney et aI.,

2003).

Recognition of beach value led Maui County to approve and adopt the only science-

based setback rules in Hawai'i in October 2003. These rules are based on erosion rates

that are calculated by the reweighted least squares (RLS, see Table 1) method, which

identifies and removes outliers before modeling the shoreline change trend with a straight

line (Fletcher et aI., 2003; Rooney, 2002; Rooney et aI., 2003). The slope of the line

represents the erosion (positive slope) and accretion (negative slope) rate ofthe beach.

Although comparisons of different shoreline change rate methodologies have been

conducted along the continental east coast of the U.S., extensive research does not exist

for beaches in Hawai'i. Due to fundamental differences between Hawaiian beaches and

those of the continental mainland (e.g., sediment composition, seasonal signal, and storm

frequency and impact), there is a need for studies specific to Hawai'i. Additionally,

previous studies have not comprehensively tested shoreline change rate methodologies.

Our goal is to compare published statistical shoreline change rate methods, including

three statistical methods previously not used in calculating shoreline change rates. These

comparisons are made using shoreline change data from the island of Maui. We first
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investigate the effects of a priori outliers (e.g., a devastating tsunami, hurricane or storm

event) on predictions that are based on shoreline change rates. We then compare

different shoreline change rate methods using synthetically derived data. Finally, we

examine the binning of adjacent transects to find a well-constrained trend of the beach.
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CHAPTER 2
PREVIOUS WORK

Most studies of shoreline changes have been done on continental beaches of the

eastern U.S. We review these and other studies that detennine the most appropriate

method based on either a comparative approach or the prediction of known positions.

Dolan et al. (1991) compare long-tenn and short-tenn erosion rates with methods

such as end-point rate (EPR), linear regression (hereafter ordinary least squares - OLS),

jackknifing (JK), and average-of-rates (AOR). By plotting the rates from one method

versus the rates of another method, they conclude that AOR is most variable, while OLS

and JK share a high degree of similarity. They stress that the best method depends on the

objective and the temporal variables of the research.

In discussing beach erosion at Rincon, Puerto Rico, Thieler et al. (1995) calculate

erosion rates using EPR, OLS, JK, and AOR in the Digital Shoreline Analysis System

(DSAS, http://woodshole.er.usgs.gov/project-pages/dsas/). They divide their study site

into four separate areas and calculate an average shoreline change rate at each section for

each of the four methods. All four methods result in similar rates, but AOR is identified

as the most appropriate shoreline change rate method at Rincon.

Dean and Malakar (1999) consider three shoreline change rate methods - OLS, EPR

and AOR - in mapping Florida's hazard zones. They calculate correlation coefficients to

compare the three methods. All three methods agree with each other; however, EPR and

OLS correlate better with each other than either does with AOR. The authors choose

OLS as their preferred method.

Fenster et al. (1993) introduce a new method, Minimum Description Length (MDL),
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as an alternative to existing methods. Based on Rissanen's (1989) MDL modeling

criterion, this simplified version uses a complexity penalty to select the model that best

fits the data (e.g., constant, linear, quadratic, etc.) with the fewest number of parameters.

Crowell et al. (1997) compare predicted values from the MDL and OLS methods to

actual values using sea-level data as a proxy for historical shoreline data. They conclude

that OLS provides equal, if not better, results for shorelines without any physical

modifications.

Differing from Crowell et al. (1997), Honeycutt et al. (2001) compare EPR to OLS by

predicting known historical shoreline data, not sea-level data, to determine the accuracy

ofthe methods. Using a priori knowledge ofmajor storms, they confirm the findings of

Galgano et al. (1998) and Galgano and Douglas (2000), which show that the accuracy of

shoreline change rates improves without storm data points. They conclude that OLS

better predicts shorelines than EPR. A good method to identify the best predictor

involves using an earlier subset of shoreline positions to test forecasting of later positions

(i.e., cross-validating). Our forecasting and hindcasting procedures follow those of

Honeycutt et al. (2001).
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CHAPTER 3
ESTABLISHED EROSION RATE METHODS

Dolan et aI. (1991) provide an excellent overview of some ofthe published shoreline

change rate methods. We expand their study to include other published methods,

describing the advantages and disadvantages of each. The two most frequently cited

methods are EPR and OLS, although most researchers now prefer OLS (Figure 1).

3.1 End Point Rate (EPR)

The EPR method uses only two data points to delineate a change rate - the earliest

and most recent shoreline positions. Given that only the end data points are used, the

information contained in the other data points is entirely omitted. The main disadvantage

of this method is that if one or both endpoints are erroneous, the calculated erosion rate

will be inaccurate (Crowell et aI., 1997; Crowell et aI., 1999; Dolan et aI., 1991).

3.2 Average ofRates (AOR)

Shoreline positions are often defined from various sources (e.g., topographic surveys,

coastal monument and beach profiles, and aerial photographs), each with its own

measurement accuracy. For this reason, Foster and Savage (1989) developed the AOR

method to average the long term change, excluding changes due to measurement errors

(error and uncertainty are used interchangeably in the text). To do this, they created a

minimum time criterion that filters out any changes due to short time spans or

measurement errors. EPRs are determined between all data point pairs and are removed

if the time interval is less than a specified minimum. All EPRs that pass the criterion are
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averaged to determine the shoreline change rate (Dolan et al., 1991; Foster and Savage,

1989). One drawback is that the minimum time criterion can be affected by large errors

or small EPR, resulting in potentially misleading results (Dolan et al., 1991). AOR also

gives more weight to recent changes in shorelines (Fenster et al., 1993). For these

reasons, Foster and Savage (1989) recommend confirming AOR results with other

shoreline change rate methods such as OLS.

3.3 Minimum Description Length (MDL)

As short-term changes may affect long-term trends, Fenster et al. (1993) propose a

simplified form of the MDL method to help identify influential short-term changes.

Assuming Gaussian errors, MDL utilizes an error component and a complexity penalty to

select the best model fit, whether it is a constant, line, quadratic, etc. If the resulting

model is quadratic or higher, two lines are produced - the zero-weight line (MDL

ZERO), which uses only recent data, and the low-weight line (MDL LOW), which

assigns weights to older data. MDL rates based on non-linear models tend to result in

variable or highly inaccurate forecasts, though the MDL criterion can help identify

physical changes within a beach (Crowell et al., 1997).

3.4 Ordinary Least Squares (OLS)

Least squares regression assumes independent Gaussian errors, and estimates the

trend of shoreline data by minimizing the sum of the squared residuals between the data

and line. The estimated parameters (bo- intercept, b l - slope) are those that minimize
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Ii(Yi - bo - btXi )2. The assumption of Gaussian errors is usually valid, since the sum

of many sources of error, as occur in these studies, tends to a Gaussian distribution.

However, outliers that violate the Gaussian assumption will bias the apparent trend

(Seber and Lee, 2003). A priori knowledge of non-Gaussian data points (e.g., storm

points) can be used to eliminate such points. Ordinary least squares assumes

homoscedasticity (e.g., Kleinbaum et aI., 1998), which means that the variance of each

Y-component (shoreline position) is the same.

This method is easy to code and many software companies include OLS as a tool in

their spreadsheet programs. A number of statistical tests have been developed (e.g.,

ANOVA) to determine the goodness of the fit and to calculate confidence intervals

around the line, future position, and shoreline change rate. These tests require near

Gaussian statistics, which are derived from data scatter rather than independent sources.

A linear fit provides a long-term trend over the years for which data is available, but

shorelines do not recede or accrete in a uniform manner, which raises questions about the

appropriateness oflinear models (Douglas et aI., 1998; Fenster and Dolan, 1994; Fenster

et aI., 1993; Morton, 1991). Also, sediment supply and transport, presence of engineered

structures, and storms may not result in Gaussian variations in the data (e.g., Fenster et

aI., 1993; Galgano and Douglas, 2000; Galgano et aI., 1998; Honeycutt et aI., 2001).

Clustering of data in time greatly affects the trend line by causing some points to have

undue influence (Dolan et aI., 1991; Fenster et aI., 1993). Since the line fit does not

incorporate the uncertainty of each data point, the uncertainties of future shoreline

positions may not reflect the data accurately. For example, according to Rousseeuw and
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Leroy (1987), this method is sensitive to outliers; often only one point is needed to distort

the trend. If an outlier exists within a data set (e.g., storm point that violates the Gaussian

assumption), the resulting line may be highly influenced by that one point. A priori

knowledge is therefore important, yet controversial (e.g.,Fenster et aI., 2001; Galgano

and Douglas, 2000; Galgano et aI., 1998; Honeycutt et aI., 2001; Zhang et aI., 2002).

3.5 Jackknifing (JK)

The jackknifing method uses multiple OLS fits to determine the shoreline change

rate. A different point for each line is omitted, resulting in a different slope for each line.

The slopes are averaged to provide a shoreline change rate. Jackknifing has the

advantage of decreasing the influence of clustered data and extreme data points.

However, computing all possible linear trends is not efficient (Dolan et aI., 1991).

3.6 Reweighted Least Squares (RLS)

Given that storms and wave conditions in Hawai'i impact different parts of the

islands with varying effects, Rooney (2002), Rooney et aI., (2003), and Fletcher et aI.

(2003) determine that RLS helps identify the true trend of shoreline change data by

removing statistical outliers in the data. This two-step method first identifies outliers at a

cut-off value ( a- )using the Least Median of Squares (LMS) regression (Rousseeuw and

Leroy, 1987). Points identified as statistical outliers are given a weight of 0 and all other

points are assigned a weight of 1. An OLS fit then finds the trend with all data points of

weights equal to 1. Unlike OLS, RLS is more robust and not as sensitive to outliers.
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RLS has a breakdown of50% (that is, if50% of the data are outliers, the trend of the data

can still be identified accurately) (Rousseeuw and Leroy, 1987). As most shoreline

studies have a limited data set, the removal of two or three points without any prior

knowledge runs an undesirable risk of discarding' good', but noisy, data. Also, adjacent

transects along a beach (spaced 20 m in our case) do not always identify the same year as

an outlier. This can lead to significant alongshore variations in modeled shoreline rates

that are inconsistent with natural beach dynamics. Thus, this method probably works

best with a large amount of data or if data from adjacent transects are binned (discussed

later), so that true outliers are more evident.
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CHAPTER 4
NEW EROSION RATE METHODS

In addition to the established methods discussed above, we explore three new

methods to calculate shoreline change rates. These methods are based on well-

established theoretical frameworks and are more robust than the least square methods

described above (Figure 2).

4.1 Weighted Least Squares (WLS)

Unlike OLS, WLS assumes heteroscedastic uncertainties. This means that the

variance associated with each Y-component (shoreline position) is not necessarily the

same at each X-component (time) (e.g., Kleinbaum et aI., 1998). If the variances are the

same, WLS reduces to OLS (Graybill and Iyer, 1994). In many studies it may be difficult

to quantify the uncertainties for WLS; however, if the variance ((J'2) or standard

deviation ((J') for each Y-component is known, the weight (w) is equal to 1/(J'2 • In

matrix form, solving for b, a column vector with unknown parameters of intercept and

slope, results in:

in which Y is a column vector containing shoreline positions, X is a matrix composed of a

column ofones and a column of time data, and XT is the transpose of the matrix X, (e.g.,

Draper and Smith, 1998). The weight matrix, W is:
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WI 0 0 0

0 W2 0 0
w=

0 0 W3 0

0 0 0 Wn

where Wi =1/cri
2 and n is the total number of data points (e.g., Graybill and Iyer, 1994).

Data points with large variance will have less of an influence on the trend line than

data points with smaller variance (Graybill and Iyer, 1994). For example, early shoreline

data have larger uncertainties associated with them than recent shorelines. WLS will put

more weight on the recent data. The resulting trend line incorporates the uncertainty at

each position as well as the uncertainty of the model. Since all other assumptions for

WLS equate with OLS (e.g., Gaussian errors), statistical tests and calculation of

confidence intervals associated with OLS can also be performed on WLS (Kleinbaum et

aI., 1998).

In order to apply this method, it is necessary for researchers to estimate all

uncertainties associated with their study. As with OLS, this method is sensitive to

outliers even if their weights are small. Hence, a priori knowledge is also important.

The drawbacks of assuming a Gaussian distribution as discussed in the OLS section also

apply to WLS. If the calculated uncertainties at each shoreline position do not accurately

express the real deviations, then the resulting rate may under- or over-estimate the true

rate.
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4.2 Reweighted Weighted Least Squares (RWLS)

RWLS is similar to RLS except that it takes into account the uncertainties of each

shoreline position. After identifying and removing outliers using LMS, a WLS line is fit

to the data. Like WLS, RWLS incorporates positional uncertainties into the rate.

4.3 Least Absolute Deviation (LAD)

Least absolute deviation is more robust with respect to outliers than least squares.

Unlike the squared residuals of least squares, the sum of the absolute value residuals in

LAD is minimized (i.e., misfit function is LilYi -bo-b,xil). As the residuals are not

squared, an extreme value has less effect in LAD than in least squares. The assumed

distribution of measurement errors is a two-sided exponential (Laplace) distribution,

rather than a Gaussian, and the Laplace distribution's longer tails make it less sensitive to

outliers (Tarantola, 1987). In comparing robust estimators, Rousseeuw and Leroy (1987)

state that LAD is preferable over least squares methods when outliers are in the y­

direction, which is the case in nearly all historical shoreline analyses.

Calculating the LAD estimate is not as straightforward as it is with least squares. A

grid search is performed to calculate a misfit over a range of slopes and intercepts. The

best fitting line is the one whose slope and intercept minimize the misfit. For example,

an intercept, bo, that ranges from -2 to 2 with increments of 0.5, and slope, 121, that ranges

from ato 2 with increments of 0.25 identifies a minimum misfit of3.65. The slope and

intercept estimates are 0.50 and 0.00, respectively (Table 2).

The uncertainty calculation for the slope estimate is more difficult than that of least
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squares. To obtain a range of slopes at a certain percentile we first calculate an estimator

of standard deviation (analogous to the root mean square error in least squares) and use it

to compute the likelihood function, which in this case is the joint probability density

function (pdf) of both the slope and intercept. The marginal pdf of the slope is obtained

by integrating the joint pdf over intercept. The marginal pdf then gives the slope range at

the percentile of interest. Unlike least squares, the slope range is not necessarily

symmetrical around the peak of the slope pdf.

The major advantage of LAD is its robustness with respect to outliers. Similar to

WLS, weights can also be incorporated in LAD (weighted least absolute deviation, or

WLAD). As there are only two parameters, LAD is not difficult to code. Care must be

taken in selecting a range of slopes and intercepts to search from when using the grid

search. If the range is not broad enough, or point spacing not dense enough, the resulting

estimates of slope and intercept might not reflect the data accurately; however, the

algorithm can be made self-checking and self-adjusting to overcome this minor difficulty.

13



CHAPTER 5
HAWAIIAN DATA AND UNCERTAINTIES

To calculate shoreline change rates in Hawai'i, we digitize the toe of the beach as our

shoreline position on images taken in different years (Fletcher et aI., 2003). The beach

toe, which approximates the low water line, has been found to be a superior feature for

shoreline change analysis along Hawaiian coastlines (Coyne et aI., 1999; Fletcher et aI.,

2003; Rooney and Fletcher, 2000).

Several sources of error influence the delineation of shorelines. For example, aerial

photographs taken at various tide levels influence the location of the digitized shoreline,

which in tum, influences the resulting shoreline change rate. For our data, Fletcher et al.

(2003) made a special effort to identify and quantify all errors in order to assess the 1- (j

uncertainty of a shoreline position. The errors are squared and summed to get a total

positional uncertainty. We assume the total uncertainty follows a Gaussian distribution,

since the Central Limit Theorem states that the sum of multiple sources of uncertainty of

arbitrary distributions tends toward a normal distribution (Draper and Smith, 1998).

We use two different types of images to generate our shoreline positions -

topographic surveys (NOAA T-sheets) and vertical aerial photographs. Only T-sheets

that pass the National Map Accuracy Standards are used in this analysis (Fletcher et aI.,

2003). The original surveyors of these T-sheets designated the Mean High Water Line

(MHWL) as the shoreline position. We offset the MHWL in T-sheets to the low water

line interpreted on aerial photos.

Following Fletcher et aI. (2003) and Rooney et aI. (2003), we calculate the total

positional uncertainty (Ut) using the equation:
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VI =±JEr 2 + Ed 2 + Ep 2 + Ets 2 + Etd 2 + Es 2 + Ee 2
, where Er = rectification error, Ed

= digitizing error, Ep = pixel error, Ets = error plotting on aT-sheet, Etd = tidal

fluctuation error, Es = seasonal error, and Ee = error in converting from MHWL to low

water line on aT-sheet. Errors for T-sheets include Ets and Ee, and exclude Er and Etd.

Aerial photographs do not include Ets and Ee.
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CHAPTER 6
METHODS

6.1 Forecasting and Hindcasting (Cross-validation)

Following Honeycutt et aI. (2001), we compare the shoreline change rate methods

discussed earlier by predicting known shoreline positions. For each prediction we

calculate the difference between the actual and predicted position for all nine methods.

Honeycutt et aI. (2001) refer to this difference as the error in prediction (EIP) and

describe the mean absolute EIP, (or mean IEIPI) as a way of representing the magnitude

of the error. In comparing the mean IEIPI for all the methods, we perform an ANOVA

test at a 95% confidence interval to identify the differences. To compare the results of

differing beach dynamics on Maui, we make forecasting predictions on two types of

beaches - those with and without engineered (or hardened) structures. We make

hindcasting predictions to check the validity of our earliest T-sheet points.

We compare EIPs ofpredictions that include a priori outliers to EIPs ofpredictions

exclusive of these outliers. Determining a priori outliers is difficult in an island setting

where different parts of the island are exposed to varying weather conditions (Fletcher et

aI., 2003). We therefore classify three regions on Maui - Kihei, West Maui, and the

North Shore - as each having its own distinct wave regime (Fletcher et aI., 2003; Rooney

et aI., 2003) (Figure 3).

We use previous research and historical accounts to determine a priori outliers. Tide

gauge data are used to confirm storm events for the North Shore only. From tide data and

historical accounts of a devastating tsunami, we consider the 1960 shoreline to be an

outlier for the North Shore. We similarly conclude that the 1963 shoreline is an outlier
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for West Maui due to kona storms based on the work ofEversole and Fletcher (2002) and

is also an outlier in the Kihei region due to kona storms based on Rooney's (2002) study.

Kona storms are low pressure systems that generate high winds and waves from the south

and occur mostly in winter.

As Honeycutt et al. (2001) point out, predictions of the near future have lower error

than predictions of the distant future. Also, if fewer data are available for a prediction, it

will have large error. Another difficulty of forecasting analysis is that shoreline positions

are not precisely known. Since all shoreline positions are subjected to errors inherent in

aerial photogrammetry and T-sheets, the true positions are unknown. Instead, an estimate

of the position is known and an estimate of the range of possible values is made. In

comparing a measured position with a prediction, the uncertainties of each should be kept

in mind. The predicted point might not equal the measured position, but remains a good

prediction because it falls within the uncertainty of the measured point. Hence, whether

one method provides a better prediction over another is affected by random errors in the

point being predicted.

6.2 Synthetic Beach Time Series

Synthetic beach time series provide an alternative to hindcasting and forecasting.

With synthetic time series, the calculated change rates of each method are compared to an

assigned rate. To do this, we first assign a true slope and use this to calculate a database

of synthetic shoreline positions at 8 discrete years. We then introduce noise to the

shoreline database and use this noisy data to calculate change rates using the various
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methods. We repeat this process 1000 times while keeping the true rate constant, but

varying the noise. Noise, in this case, is the scattering of the shoreline position based on

the known uncertainties and an additional unknown factor. The unknown factor makes

our knowledge ofthe shoreline position less certain. Hence, the generated noise in the

synthetic analysis is greater than the uncertainty ofthe model in real data. Noise is

created by sampling from a probability density function associated with each major

uncertainty component that we quantify. For example, we quantify a rectification

uncertainty based on the aerial photo ortho-rectification process. This has several

independent errors associated with it, such as lens distortion, camera tilt, earth curvature,

and terrain relief. We assume that a Gaussian distribution is the underlying distribution

for the rectification error due to the Central Limit Theorem (Draper and Smith, 1998) and

sample from this distribution to represent noise caused by the rectification process.

To account for any additional uncertainties that are not part of the shoreline analysis,

we also generate noise from a Laplace, or two-sided exponential, distribution and add it

to each shoreline position. We sample from each uncertainty distribution and add the

samples together to get a total noise value for each synthetic data point. We calculate a

change rate for every synthetic time series and make a histogram of all the calculated

rates to see which method consistently is closest to the true value.

To compare the methods, we use the Kolmogorov-Smimov test (hereafter K-S test) to

determine whether two distributions of calculated change rates are significantly different

(the Gaussian assumption is not needed to use the K-S test). The K-S test is sensitive to

the mean, standard deviation, and shape of each distribution (Siegel, 1956). Thus, this
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test shows whether different rates methods give statistically indistinguishable predictions.

If more than one method has indistinguishable predictions, the choice of method is left to

the discretion of the analyst. To test the methods at different noise levels, we calculate

rates with synthetic data twice - one set of data with less noise and the other with more

noise. In the less-noise calculation, we sample from each uncertainty distribution that has

a standard deviation that is equal to the average of the source of error plus a Laplace

distribution with a standard deviation of 10 m. For the calculation ofrates with more

noise, we use the maximum value of each source of error component and the Laplace

distribution with a standard deviation of20 m.

We also compare methods when an extreme outlier exists, such as a storm shoreline.

As it is difficult to identify a priori outliers at specific beaches, we want to identify

methods that best determine the actual rate with the inclusion of an extreme non­

Gaussian point. We first add noise from a Laplace distribution with a standard deviation

of 100 m to a middle data point (specifically, the 4th position) and then repeat the above

process of calculating a change rate 1000 times. We then add extreme noise to the last

point and repeat the above process. A KS test is also performed on the resulting

distribution ofrates. Similar to the synthetic data without a storm point, we compute two

different data sets - one with less noise and one with more noise, which is calculated in

the same manner as mentioned in the preceding paragraph.

6.3 Hawaiian Beaches and Binning of Shoreline Data

We calculate change rates from shore-normal transects spaced 20 m alongshore.
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Individual transects contain between 5 to 9 unevenly spaced points spanning ca.100

years. These datasets are typically limited and characterized by large data scatter. To

reduce the effect of natural data variation from transect to transect and measurement

errors, we bin data onto one plot from adjacent transects belonging to a contiguous

stretch of beach and calculate change rates using the RWLS method. As the whole beach

does not necessarily behave in the same manner, we need to identify sections of the beach

that are indistinguishable. Importantly, transects that have engineered structures and no

beach fronting them are removed from this analysis because most coastal managers

define these areas as having no erosion or accretion, and their inclusion will unduly

influence rates calculated along the rest of the beach.

To identify which transects should be binned together and thus represent a section of

beach where erosion rates are indistinguishable, we group adjacent transects and compare

their combined rate to the combined rate of all other transects on that beach. The reader

is referred to Figures 4-8 for a graphical illustration of the binning process. We start with

a window spacing of4 transects (Figure 4) and group the first four adjacent transects

together and then calculate the rate. We compare this rate to the rate of a bin of the

remaining transects using a Student's t-test (Kleinbaum et aI., 1998) at a 95% confidence

interval to determine any disagreements (Figure 4). The window is then shifted over by

one transect and a new t-test is performed. The window continues shifting by one

transect until the last four transects are grouped together. Each time the window shifts, a

t-test is calculated to compare the grouped transects within the window to the binned rate

of the rest of the transects. The window size is then increased from 4 transects to 6 and
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the process of calculating a t-test is repeated. The window size is increased and the

binning procedure is repeated until we reach a window size equal to (n transects)/2.

When the binning procedure is complete, clusters of transects are identified by executing

a Student's t-test on groups of transects that are found to be statistically different from the

rest of the beach. Within each window size, a t-test is performed on any overlapping

transects (Figure 5). If the overlapping transects are statistically not different, then they

are grouped together as one bin (Figure 6A). If they are different, then they are grouped

separately (Figure 6B). Another t-test is performed to determine whether the bins at each

window size are statistically different from bins of other window sizes that have

overlapping transects. Bins that are found to be statistically not different are clustered

together and a rate is calculated for that region (Figure 7). For visual purposes, each

cluster is assigned a color and each transect within a cluster is allotted a shade (Figure 8).

The shade depends on the frequency of windows that intersect a given transect - transects

that contain a higher frequency ofwindows that belong to the same cluster will be a

darker shade than transects that have a lower frequency of windows. For example, in

Figure 7, transect #57 has 27 windows that intersect it, while transect #51 has only 3

intersecting windows. As a result, transect #57 will be darker than transect #51 (Figure

8). Transects that encompass more than one cluster will have a mixed color value.
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CHAPTER 7
RESULTS

7.1 Rate Method Comparisons

The prediction analysis (forecasting and hindcasting) use real data to compare

shoreline change rate methods. Although many caveats are associated with this analysis,

forecasts and hindcasts suggest how well each rate method predicts future real data. On

the other hand, the advantage of using the synthetic analysis is that the true synthetic rate

is known, so the error of the predicted rate is also known. However, this analysis uses

manufactured rather than real noise and assumes that errors are additive. Both prediction

and synthetic results agree that MDL and AOR provide the least desirable results, and

OLS, WLS, RLS, RWLS, JK and LAD are valid methods under certain conditions.

7.1.1 Forecasts

Excluding the North Shore, forecasts ofpositions with hardened structures have lower

IElPI than forecasts ofpositions free ofhardened structures. The North Shore predictions

(Tables 3-4) with the 1960 storm position have considerably higher IEIPI, which can be

attributed to one beach where predictions made from T-sheets and 1960 positions did not

reflect actual positions (Figure 9). Generally, predictions from OLS, WLS, RLS,

RWLS, JK, EPR, an LAD are statistically not different and have the smallest IEIPI. AOR

and MDL are continuously singled out as methods that are significantly different from

other methods because they show appreciably higher IEIPI (Tables 3-4).

Predictions improve for all methods when a priori outliers are removed from the

dataset. This improvement ranges from <0.1 m to 15 m. Geographically, the most

improvement occurs on the North Shore with hardened structures. MDL and AOR
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improve more than other methods when outliers are removed (average not including

North Shore = 3.6 m). The storm points negatively influence MDL and AOR predictions.

All least squares methods, JK and LAD, on the other hand, have minimal improvements

when a priori outliers are removed for all regions (average improvement excluding the

North Shore = 0.7 m).

7.1.2 Hindcasts

The hindcasting mean IEIPI is slightly larger than that of forecasts (Tables 4-5). This

increase is due to large uncertainties and lack ofdetailed information that surrounds T­

sheets. Hindcasts ofbeaches with hardened structures have lower mean IEIPI than

beaches without hardened structures (excluding the North Shore). The hardened

structures consist of seawalls, groins, and revetments, which may stabilize the beach on a

short-term basis. Similar to forecasts, MDL and AOR hindcasts have high mean IElPI

and generally do not reflect the results of all other methods.

Removing a priori outliers improves hindcastsminimally. Hindcasts of West Maui

improve by only 1 m when storms are removed. Hindcasts ofthe North Shore with

hardened structures are less accurate by an average of2.4 m without storm points

(individual beaches have even a greater negative difference). This decrease in accuracy

could be attributed to the storm outlier having no negative influence on the trend; hence,

it is not a true storm outlier for that area. All other areas, however, show marked

improvement when a priori outliers are excluded. AOR has the biggest improvement in

hindcasts when storms are removed.

7.1.3 Synthetic Data
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Three sets of synthetic data were generated - one with no storm outlier, one with a

storm outlier in a middle position, and one with a storm outlier at the last position. For

each set, two runs were made - one with less noise and one with more noise. A Siegel­

Tukey test that tests the significance of two standard deviations was also calculated for all

rate methods. The results of the Siegel-Tukey test concur with the K-S test results.

7.1.3.1 Time Series Without a Storm Point

K-S test results oftime series with less noise show that WLS, RWLS and WLAD

predictions are not statistically different at the 95% confidence interval, but are

statistically different from all other methods (Table 7A). WLS, RWLS and WLAD also

have the smallest standard deviations, or data spread, and thus provide better predictions

(Figure 10). K-S test results oftime series with more noise show that all methods except

for AOR and MDL perform equally well and are not significantly different from each

other (Table 7B). AOR and MDL distributions have high spreads compared to all other

methods (Figure11).

7.1.3.2 Time Series with Storm in Middle Position

K-S test results of data with less noise demonstrate that methods other than AOR and

MDL are not statistically different (Table 7C). The spreads ofMDL and AOR are higher

than all other methods (Figure 12). For data with more noise, the K-S test results show

that OLS, WLS, RLS, RWLS, JK, and WLAD are not statistically different (Table 7D).

EPR and LAD are statistically different from other methods, but not statistically different

from each other. EPR and LAD also have higher spreads than other methods, excluding

AOR and MDL. AOR and MDL are statistically different from all other methods and

24



have the highest spreads (Figure 13).

7.1.3.3 Time Series with Storm in Last Position

K-S test results of data with less noise show that RLS, RWLS, LAD, and WLAD are

not statistically different and have the lowest spreads (Table 7E). OLS, WLS, and JK do

not have statistically different distributions from each other, but have higher spreads than

RLS, RWLS, LAD, and WLAD. EPR, AOR, and MDL have much higher spreads

(Figure 14). When more noise is added to the time series, K-S test results show that all

methods except for EPR, AOR, and MDL are not statistically different (Table 7F). EPR,

AOR and MDL have higher spreads than all other methods (Figure 15).

7.2 Binning

Based on both the forecasting and synthetic time series results, we choose to bin data

using the RWLS method. RWLS is chosen because we are confident in our knowledge

ofthe major uncertainties in our shoreline methodology and are not confident of the

identification of storm outliers. Binned rates and their uncertainties are better resolved

than unbinned rates and their uncertainties. 84% ofthe trends ofbinned rates are

significant, whereas only 38% of the trends ofunbinned rates are significant. There is a

0.1 m decrease in uncertainties with binned rates compared to unbinned rates. In both

instances, the binned rates and uncertainties are better constrained than the unbinned rates

and uncertainties. We perform the binning analysis on 15 beaches - 8 from Kihei, 4 from

West Maui, and 3 from the North Shore. The 8 beaches ofKihei display 2 different

patterns and are further categorized into 2 geographical groups within this study site - 4

central beaches and 4 southern beaches (Table 8).
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Kihei is sheltered from waves by Kahoolawe and Lanai islands, but is subjected to

south swells, refracted north swells and kona storm waves. No fringing reef is present in

our study area (Fletcher et aI., 2002; Makai Ocean Engineering and Sea Engineering,

1991; Rooney and Fletcher, in press). The central beaches in Kihei behave uniformly.

Only one of these central beaches contains a seawall but all four have significant erosion.

The southern beaches depict distinct behaviors between their northern and southern

sections (Table 8).

West Maui beaches are affected by North Pacific swells, south swells and kona storm

waves. North Pacific swells do not severely impact this area because it is located in the

shadow ofMolokai island (Eversole and Fletcher, 2003; Fletcher et aI., 2002). Segments

of the shoreline in this area contain fringing reefs and only one beach has a seawall

(Eversole and Fletcher, 2003; Makai Ocean Engineering and Sea Engineering, 1991).

West Maui study sites depict a pattern of erosion at one end of each beach and either

minimal erosion or accretion at the other end (Table 8).

North Shore beaches are influenced by North Pacific swells and tradewind waves.

Fringing reefs are widespread in this area (Fletcher et aI., 2002; Makai Ocean

Engineering and Sea Engineering, 1991). The North Shore study area illustrates distinct

behaviors between eastern and western sections of each beach. Two of the three beaches

have engineered structures - one has 5 groins and one has an offshore rock platform with

an onshore revetment. These two beaches exhibit more erosion than the beach without

any structures (Table 8).
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CHAPTER 8
DISCUSSION

8.1 Comparisons ofRate Methods

Based on our synthetic work and prediction analysis, we advise analysts to determine

how well they understand the uncertainty in their methodology before picking the best

erosion rate method. When uncertainties are mostly understood, weighted methods are

recommended; conversely, if uncertainties are poorly understood, OLS, RLS, JK, or LAD

are recommended. If doubt exists on the Gaussian nature of the uncertainty, LAD and

WLAD are recommended. We are confident in our understanding of the major

uncertainty components in our shoreline assessment study; however, we are not confident

in our assessment of storm outliers. As stated earlier, Hawai'i is an island state and

different beaches are affected differently by storms. The difficulty in identifying a priori

outliers, together with the results from the synthetic storm analysis and the prediction

analysis, are t1)e basis for choosing RWLS as the most robust method for Hawai'i.

In synthetic data sets with less noise, the weighted methods are far superior to all

other methods. This superiority disappears as noise increases. As more noise is

introduced to the data, the weights no longer reflect the uncertainty, and other methods

that put more emphasis on the uncertainty in the model achieve better results. OLS, RLS,

JK, and LAD out-perform weighted methods when noise is sampled solely from a

Laplace distribution. If, however, the majority of uncertainty components are known,

weighted methods reflect the true process better (see Table 7A).

Results vary when storm points are added to middle and end positions of synthetic

data. The results with a storm in the middle are similar to results containing no storm
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point. The bias created by the stonn at the middle position is not as detrimental in

finding the long-tenn trend as the bias with a stonn at the end position. This is because

an end point is a leverage point that can influence the trend of the model more than

interior points. With the stonn at the end position, WLS, OLS, and JK do not perfonn as

well as RLS, RWLS, WLAD and LAD. Since WLS, OLS and JK do not identify

statistical outliers and the stonn point is at a leverage position, the stonn point unduly

influences the results. RWLS and RLS remove statistical outliers, and LAD and WLAD

are less susceptible to outliers in the y-direction (Rousseeuw and Leroy, 1987); hence,

they perfonn better than all other methods when a stonn point exists at the end position.

When noise increases, however, all methods perfonn similarly, except for EPR, AOR,

and MDL (Table 7F).

Forecasting results show that in most cases, methods with the highest mean IEIPI are

statistically different from methods with lower mean IEIPI. OLS, WLS, RLS, RWLS,

EPR, and LAD consistently have the lowest EIP and are insignificantly different from

each other.

MDL and AOR have the highest mean IEIPI. Their predictions also have the most

improvement when stonn outliers are removed. Both methods put more influence on

short-tenn trends and remove data from the rate calculation. The end point rate

combinations that have a stonn point as an end point in AOR might be weighted strongly

in the AOR rate. Once the stonn is removed from the data, AOR predictions improve.

These are sti11less effective than the least squares methods, since AOR depends on the

minimum time criterion, which decreases the number ofEPRs available for averaging.

28



MDL ZERO predictions are comparable in accuracy to those ofAOR. The zero-weight

line ofMDL often discards early shoreline positions that don't fit the pattern of the most

recent trend of the data. Predictions made with the most recent trend are more variable

than predictions made with a longer-term trend. Removing the storm points affect the

more recent trends and result in improved, yet still variable predictions. MDL LOW has

better predictions than MDL ZERO because it does incorporate the early shoreline

positions, which agrees with Crowell's et al. (1997) results. The predictions with the

low-weight line do not always perform as well as the least squares because they still give

more weight to the more recent data points.

When comparing forecasts with hardened structures to forecasts without hardened

structures, the mean IEIPj for hardened structures is reduced in all cases, except for the

North Shore. This reduction is similar to that of the hindcast results. In all areas, except

for the North Shore with hardened structures, predictions exclusive of storm data improve

only slightly and are insignificant in most cases. For the North Shore with hardened

structures, the mean IEIPI is extremely large (> 20 m) when the 1960 storm (in this case,

tsunami) position is present. Looking at individual beaches on the North Shore, the mean

IEIPI for Kanaha shows no improvement when removing the 1960 tsunami point (Table

9). Kahului, on the other hand, is responsible for the large mean IEIPI. The Kahului

analysis is composed of three early T-sheets (1899, 1912 and 1929), and five aerial photo

positions (1960, 1975, 1988, 1997 and 2002). All but one set of predictions in Kahului is

comparable to predictions from Kanaha. The one set ofpredictions that behaves

differently in Kahului consists of three T-sheet points and one 1960 aerial position, which
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account for the large mean IElPI. This is due to the fact that the erosion rates from these

points indicate accretion or minor erosion. However, erosion averaged 2.80 mlyr

between 1960 and 1975. This significant increase in erosion resulted in predictions that

do not reflect the actual positions (Figure 9). Comparing the results without this set of

predictions reveals that all methods, excluding MDL, do not improve significantly when

the 1960 position is taken out (Table 10). When segmenting the study area into

individual beaches, some beaches have no significant improvement at the 95%

confidence interval when storm outliers are removed, while other beaches do. This could

be due to differing storm or tsunami effects. Some beaches are protected from the full

force of the waves by surrounding islands or fringing reefs, while others are more

exposed.

The EIPs for hindcasts are somewhat greater than those of forecasts. This is because

T-sheet positions usually have greater uncertainties than aerial photos (± 7 -10m).

Hindcast predictions that are less than 10m away from the true position are still within

the uncertainty bounds of the true positions. The difference between the predicted point

and the true point with its uncertainty thus reduces to a maximum of 10m (excluding the

North Shore). We calculate a 95% confidence interval uncertainty around the predicted

positions (Table 11). The minimum average uncertainty of the predicted positions is 15

m. By incorporating the uncertainties of both the true and predicted positions, even the

North Shore predictions fall within the uncertainty bands. Also, removing storms does

not much improve the hindcasts - 10 of the 13 beaches show no significant improvement,

one shows significant improvement with half the methods, one beach shows significant
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improvement and one beach shows significantly worse predictions. For the beach that

shows statistically significant improvement, the improvement is not greater than the

uncertainty surrounding both the predicted and actual positions. Thus, early 20th century

T-sheet positions are valuable in the shoreline change rate analyses.

8.2 Outliers

We investigated two types of outliers and their influence on the accuracy of

predicting shoreline behavior: (1) a priori outliers based on historical data, such as a

tsunami, hurricane, or storm event; and (2) outliers based on residual statistics.

The time necessary for a shoreline to recover from a major erosional event can vary

(Zhang et aI., 2002), resulting in non-Gaussian behavior. Zhang et ai. (2002) argue that

storms are independent of any long-term trend and should be considered separately

because beaches eventually recover to their pre-storm positions. With limited data sets,

such as individual transects that have only 5-8 points, an a priori outlier may unduly bias

any calculation of a long-term trend. Zhang et ai. (2002) support Douglas and Crowell's

(2000) assertion that the most practical option is to remove these points. In our study,

however, we identify two a priori outliers - the 1960 tsunami that affected the north

shore ofMaui and the 1963 kona storms. When we use the dataset to predict the position

of a known shoreline at each beach, removing storm shorelines improves our prediction

by an average of 1.1 m (least squares), with the exception of one beach that experienced

accretion during a storm event. This improvement is minimal when compared to

Honeycutt's et ai. (2001) results from U.S. east coast beaches, which demonstrate an
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improvement of 15-30 meters when a priori outliers are removed. We note, however, that

carbonate beaches in general and Hawaiian beaches specifically tend to be much

narrower than east coast beaches. An improvement of 1 m may represent 5% of the dry

beach width in many cases. The cost of removing outliers from small datasets, typically

used in erosion analysis, is usually an increase in the uncertainty of the calculated long­

term trend. In the end, an analyst must weigh the cost of increased uncertainty against

the benefit of improved predictive accuracy. We conclude that a priori outliers need to

be investigated at each study site before deciding on their treatment.

Researchers currently do not remove outliers unless they can assign the points to

some meteorological or geological factor. Statistical outliers, however, are critical

components to consider when using least squares because ofthis method's susceptibility

to outliers, especially for small datasets. A large deviation at a point causes a bias in the

trend if there are few data points, and this can be amplified if the point is at a leverage

position. Some studies have attempted to relate statistics, such as residuals, to outliers.

Focusing on reducing the root mean squared error (RMSE), Galgano et al. (1998) state

that storm-influenced residuals increase the error in the model fit and thus invalidate the

model. They choose to use a priori information to remove these points, but the erosion

rates with and without these points are not significantly different. Fenster et al. (2001)

identify outliers by calculating studentized residuals and compare them to known storm

dates. They find that none of the statistical outliers correspond to any known storms and

advise not to remove them as outliers.

Fletcher et al.(2003) and Rooney et al. (2003) identify and remove statistical outliers
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differently. As mentioned earlier, the least median of squares (LMS) method is part of a

two step process involving RLS or RWLS that calculates residuals (Rousseeuw and

Leroy, 1987). They disregard a data point if a residual is greater than an assigned cut-off

value (a). The cut-off value (a) is an estimate of the true standard deviation of a

population ( cr), which is dependent on the sample size. For small sample sizes, there is

less certainty in any estimate of the true cr, making the cut-off boundary less exact and

causing the removal or retention of too many outliers. If the outlier analysis at adjacent

transects identifies different points as outliers, the resulting erosion rates are also likely to

differ, leading to the case where physically adjacent beach segments are assigned

inconsistent long-term trends. In our dataset with an alongshore spacing of 20 m, we find

that adjacent transects do not behave independently of each other.

One way to utilize LMS is to increase the number of points used in the calculation of

a trend, which can be done by binning data from adjacent groupings oftransects and

calculating a trend. Binning will reduce the spread, or uncertainty, around the cut-off

value ( a- ), which will improve the identification of outliers. Therefore, we recommend

using a relatively large sample size to increase the signal-to-noise ratio and improve the

estimate of the spread of the data ( a- )when removing statistical outliers.

8.3 Binning Analysis

Setbacks on Maui are currently based on erosion rates from transects spaced 20 m

alongshore. Some adjacent transects have differing rates, which affect the setback

location. Because only 5-9 historical shoreline positions are available, the noise in the
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data can mask the signal. One advantage ofbinning is that by spatially increasing our

points, we decrease the noise by averaging out the random errors. This decrease in noise

allows us to better identify a region of a beach that has indistinguishable rates (i.e., sub­

littoral cells) and assign it one rate. Temporally, our data is unchanged - we can only

increase the number of temporal positions by adding more photographs or T-sheets.

Coastal planners will then be able to use one rate to determine the setback for that sub­

cell ofbeach.

When comparing trends of all beaches, the four central beaches in Kihei behave

similarly. All four beaches are relatively small pocket beaches with well-developed

backshores. Their location, in the shadow of the islands ofMolokai, Lanai and

Kahoolawe, protects them from high swells; however, kona storms have a history of

inflicting great damage to this area (Fletcher et aI., 2003; Rooney and Fletcher, 2000;

Rooney and Fletcher, in press). In a study of net sediment transport on a stretch of

armored beach just north ofthese beaches, Rooney and Fletcher (2000) conclude that

tradewind waves cause southward movement of sediment, though a northward movement

of sediment predominates due to kona storm activity. We do not see a similar net

movement in sediment. Rather, a uniform manner of erosion is characteristic throughout

each beach. This uniformity could be due to the relatively small size of the beach that is

evenly affected by both kona storm waves and tradewind waves or that any movement is

undetectable given the existing data sets and inherent uncertainties.

The southern beaches in Kihei are more susceptible to south swells and have more

variability in binning results. These beaches are less developed and less eroded than their
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central counterparts. A cinder cone divides these four beaches into two northwest facing

and two southwest facing beaches. A very small pocket beach on the south end of the

cinder cone accretes uniformly. The cinder cone protects it from both north and south

waves. The cinder cone also directly affects a pocket beach to the north of it and a longer

pocket beach to the south. The central portion of the longer beach erodes uniformly,

while the north end of the beach erodes faster and the south accretes faster. This is

caused by interference of sediment transport by the headland. The pocket beach directly

north of the cinder cone exhibits the most erosion in the central portion of the beach,

while the northern section shows either minimal erosion or accretion. This follows

Rooney and Fletcher's (2000) conclusion of net sediment transfer to the north.

Two of the three beaches on the North Shore have engineered structures that

influence the results. The North Shore is affected by strong North Pacific swells in the

winter and strong, consistent tradewind waves throughout the year. The western end of

one beach contains 5 groins and is less erosive than the eastern portion of the beach

because a groin at the eastern end of this beach reduces the amount of sediment delivery

to the west of it. The groins were installed to slow the alongshore sediment transport to

the west (Makai Ocean Engineering and Sea Engineering, 1991), but have caused

extensive erosion. Another beach has an offshore rock platform and a revetment in the

center of the beach that has caused great erosion on the eastern end of the beach.

We compare our binning results (Figure 16) to Eversole and Fletcher's (2003) study

of sediment transport at Kaanapali Beach in Maui in order to relate annual transport to

multi-decadalobservations. Eversole and Fletcher (2003) examine sediment transfer by
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longshore sand transport at the Kaanapali Beach littoral cell and conclude that transport

of sand is northward in summer and southward in winter, although the net annual

transport is northward. They identify an inflection point within the littoral system and

demonstrate a seasonal volume shift at this position, which also approximates the net

annual transport in this location. In our binned analysis, the same region is clustered

together and identified as a group that is accreting. We find that this group differs from

the southern portion of the beach, which is eroding long-term at a much faster rate.

Although we are not able to identify seasonal fluxes, we do observe erosive south and

accretive north sections that agree with Eversole and Fletcher's (2003) observation of net

annual transport to the north.

8.4 Erosion Hazard Maps

Erosion hazard maps are useful in identifying setbacks that are used by coastal

planners. Based on the results of our study, we have produced erosion hazard maps that

reflect the trend of shoreline movements more accurately than previously used maps.

These new maps incorporate uncertainties of the shoreline change rate methodology and

identify binned regions of a beach. The drawbacks of these maps include assumptions of

a linear shoreline behavior, with no change in long-term effects of storms.

There are three major steps coastal managers need to do in order to produce erosion

hazard maps (Figure 17). The first is to identify a change rate method based on their

data. The next step is to bin the data. For example, two bins are identified in Figure 18 ­

one on the eastern end of the beach and one on the western end. Finally, transects of each
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bin are grouped together and the 50-year predicted position with a 1- (j' uncertainty is

identified by projecting the regression line into the future. The setback is calculated with

1- (j' confidence bands placed on either side of the setback, which creates a hazard zone.

Maui County measures the setback from the certified shoreline. The vegetation line is

most often used as a proxy for the shoreline, and includes a 6.1 m (20 ft) buffer that is

designed to partially compensate for method errors, storm and tsunami hazards, and

nonlinear shoreline change. In our analysis, the 50-year predicted position is calculated

from low water line data; consequently a vegetation line offset and buffer are added to

the future position before the setback is projected onto the map.

37



CHAPTER 9
CONCLUSIONS

By comparing the shoreline change rate methods and investigating outliers, we make

the following conclusions. (1) OLS, RLS, WLS, RWLS, JK, LAD, and WLAD are

preferred methods based on synthetic results and low IEIFI in forecasts. If major

uncertainties in a methodology are known and quantifiable, WLS, RWLS, and WLAD

better reflect the true process of the data. Ifuncertainties are unknown or not

quantifiable, LAD is preferred, although OLS, RLS, and JK can be considered. If effects

of storms are unknown or a priori outliers are hard to identify, RLS, RWLS, LAD, and

WLAD are preferred. (2) We choose to use RWLS on Maui as our method based on our

knowledge of uncertainties and our lack of confidence in identifying a priori outliers. (3)

MDL and AOR produce the most variable results. (4) Early 20th century T-sheets are

valuable in shoreline change rate analysis. (5) Hardened shorelines reduce variability of

beach behavior. (6) Increasing the number of data points via binning neighboring

transects in a RWLS or RLS analysis improves the estimate of spread in data when

identifying statistical outliers.

We conclude from the binning analysis that (7) binning adjacent transects improves

the signal-to-noise ratio. The resulting binned rates reflect long-term sand transport

within a littoral cell.
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APPENDIX A: TABLES

Table 1. Abbreviations in text.

EPR
AOR
MOL LOW
MOL ZERO
OLS
WLS
RLS
RWLS
JK
LAD
WLAD
EIP

End Point Rate
Average of Rates
Minimum Description Length - Low weight line
Minimum Description Length - Zero weight line
Ordinary Least Squares
Weighted Least Squares
Reweighted Least Squares
Reweighted Weighted Least Squares
Jackknifing
Least Absolute Deviation
Weighted Least Absolute Deviation
Error In Prediction

39



Table 2. An example of a misfit function for LAD. The values of the calculated cost
function are in each box. bo= intercept and ranges from -2 to 2 with increments of 0.5;
b1= slope and ranges from 0 to 2 with increments of 0.25. The minimum value is
highlighted with a slope of 0.50 and intercept of O.

bl
000 0.25 050 075 100 1.25 150 1 75 200

bO -2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
2.00

22.36 16.86 11.56 7.72 6.51 7.62 10.77 16.14 21.64
19.61 14.11 9.19 6.14 5.40 8.10 13.39 18.89 24.39
16.86 11.36 7.24 4.69 5.55 10.64 16.14 21.64 27.14
14.11 9.29 5.29 4.01 7.89 13.39 18.89 24.39 29.89
11.74 7.24 nm'!!! 5.75 10.64 16.14 21.64 27.14 32.64
9.69 5.23 4.60 8.47 13.39 18.89 24.39 29.89 35.39
7.64 5.25 6.95 11.22 16.14 21.64 27.14 32.64 38.14
7.29 6.45 9.47 13.97 18.89 24.39 29.89 35.39 40.89
8.18 8.47 12.22 16.72 21.64 27.14 32.64 38.14 43.64
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Table 3. Forecasts free of hardened structures. ElP = error in prediction. Mean IEIPI is
the average magnitude difference between a predicted and known position. The mean
IElPI of all methods were compared by an ANOVA test. Methods containing 'yes'
indicate statistically insignificant mean !ElP!, while 'no' means statistically significant
mean IElPI.

Mean EIP (m) Mean IEIPI (m) Statistically! Mean IEIPI (m) Statistically
Region Method all points wlo storms all points Similar? wlo storms Similar?

OLS 4.0 0.4 11.7 yes 9.3 yes
WLS 4.3 0.3 12.6 yes 9.9 yes
RLS 3.9 0.4 11.8 yes 9.3 yes

RWLS 4.2 0.3 12.6 yes 9.9 yes
Kihei EPR 4.2 0.4 12.5 yes 9.7 yes

AOR 7.8 0.8 19.0 no 12.7 no
JK 5.4 1.3 13.6 no 10.8 no

MDLLOW 9.0 0.2 20.3 no 12.4 no
MDLZERO 16.3 2.5 29.8 no 16.8 no

LAD 3.8 0.8 11.7 yes 9.5 yes
OLS -1.5 -1.3 8.8 yes 8.5 yes
WLS -1.9 -1.7 9.2 yes 8.7 yes
RLS -1.7 -1.5 8.9 yes 8.6 yes

RWLS -2.1 -1.8 9.3 yes 8.7 yes
West Maui EPR -0.7 -0.5 9.6 no 8.8 yes

AOR -7.1 -3.1 14.7 no 10.4 no
JK -2.3 -2.1 9.6 no 9.3 yes

MDLLOW -2.5 -2.8 9.8 no 9.0 yes
MDLZERO -4.1 -4.2 11.6 no 10.5 no

LAD -0.3 -0.3 8.8 yes 8.7 yes
OLS -1.8 -0.9 5.2 yes 4.9 yes
WLS -1.4 -0.8 5.1 yes 5.0 yes
RLS -1.8 -0.9 5.2 yes 4.9 yes

RWLS -1.4 -0.8 5.2 yes 5.0 yes
North Shore EPR -1.9 -0.9 5.0

,
4.9yes yes

AOR -2.2 -1.1 5.5 no 5.3 yes
JK -1.5 -0.8 4.9 yes 4.8 yes

MDLLOW -1.5 -0.7 5.1 yes 4.9 yes
MDLZERO -0.7 -0.3 5.6 yes 5.4 yes

LAD -2.0 -1.0 5.0 yes 4.8 yes
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Table 4. Forecasts with Hardened Structures.

MeanEIP (m) Mean IEIPI (m) Statistically! Mean IEIPI (m) Statisticalh
Region Method all points w/o storms all points Similar? w/o storms Similar?

OLS -1.6 -2.2 7.4 yes 7.0 yes
WLS -1.8 -2.4 7.7 yes 7.2 yes
RLS -2.0 -2.2 7.7 yes 7.0 yes

RWLS -2.0 -2.4 8.0 yes 7.2 yes
Kihei EPR -1.7 -2.3 7.7 yes 7.1 yes

AOR -2.5 -3.0 14.1 no 8.2 no
JK -2.0 -2.5 8.5 no 7.4 yes

MDLLOW 1.1 -2.7 14.1 no 8.2 no
MDLZERO 2.1 -3.3 18.6 no 10.1 no

LAD -1.7 -2.1 7.2 no 6.8 yes
OLS -3.3 -3.3 6.0 yes 6.1 yes
WLS -3.8 -3.8 6.2 yes 6.2 yes
RLS -3.4 -3.3 6.1 yes 6.1 yes

RWLS -3.8 -3.8 6.3 yes 6.2 yes
West Maui EPR -3.5 -3.5 6.2 yes 6.2 yes

AOR -4.7 -4.8 8.1 no 8.1 no
JK -4.0 -4.0 6.7 yes 6.8 yes

MDLLOW -4.3 -4.6 6.3 yes 6.6 yes
MDLZERO -6.4 -6.6 8.3 no 8.5 no

LAD -3.2 -3.3 6.0 yes 6.1 yes
OLS -11.1 5.0 20.4 yes 10.0 yes
WLS -9.3 5.6 20.7 yes 9.8 yes
RLS -11.0 5.0 20.4 yes 10.0 yes

RWLS -9.3 5.6 20.6 yes 9.8 yes
North Shore EPR -10.7 4.3 20.7 yes 10.0 yes

AOR -10.3 2.6 21.9 yes 11.6 no
JK -11.5 3.8 20.8 yes 10.4 yes

MDLLOW -2.5 6.8 24.0 no 10.2 yes
MDLZERO 0.5 8.0 26.7 no 11.4 no

LAD -11.1 5.6 20.1 yes 9.6 yes
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Table 5. Hindcasts free ofhardened structures.

Mean ElF (m) Mean IEIFI (m) Statisticall~ Mean IEIFI (m) Statisticall)
Region Method all points w/o storms all points Similar? w/o storms Similar?

OLS 16.4 11.1 20.3 yes 16.4 yes
WLS 16.3 11.1 20.1 yes 16.4 yes
RLS 16.5 11.0 20.3 yes 16.4 yes

RWLS 16.3 11.0 21.1 yes 16.4 yes
Kihei EPR 9.8 11.3 18.1 yes 16.8 yes

AOR 8.5 9.4 27.6 no 17.0 yes
JK 17.4 9.4 21.0 yes 15.6 yes

MDLLOW 0.3 2.0 17.0 yes 15.2 yes
MDLZERO -14.8 -7.9 22.1 yes 17.6 yes

LAD 19.1 19.4 22.9 yes 21.9 yes
OLS -7.9 -6.7 13.4 yes 13.1 yes
WLS -8.0 -6.7 13.4 yes 13.1 yes
RLS -7.7 -7.1 13.2 yes 13.0 yes

RWLS -7.9 -7.1 13.2 yes 13.0 yes
West Maui EPR -9.8 -7.6 14.5 yes 12.9 yes

AOR -4.2 -6.8 17.1 yes . 14.0 yes
JK -7.7 -6.0 13.2 yes 13.0 yes

MDLLOW -7.7 -6.6 13.1 yes 13.1 yes
MDLZERO -8.5 -6.5 13.6 yes 13.2 yes

LAD -8.6 -7.5 13.8 yes 13.0 yes
OLS -3.7 2.3 13.3 yes 9.1 yes
WLS -3.6 2.3 13.2 yes 9.0 yes
RLS -3.6 2.3 13.4 yes 9.1 yes

RWLS -3.5 2.3 13.3 yes 9.0 yes
North Shore EPR -2.6 2.6 12.2 yes 8.9 yes

AOR -1.7 3.3 13.5 yes 9.3 yes
JK -3.8 2.2 13.5 yes 9.1 yes

MDLLOW -3.1 2.5 12.4 yes 8.0 yes
MDLZERO -4.8 3.6 13.9 no 8.9 yes

LAD -3.7 2.2 13.1 yes 9.3 yes
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Table 6. Hindcasts with Hardened Structures.

MeanEIP (m) Mean [EIPI (m) StatisticallY; Mean [EIPI (m) Statisticalh
Region Method all points wlo storms all points Similar? wlo storms Similar?

OLS -2.7 -1.5 11.9 yes 11.5 yes
WLS -2.8 -1.5 11.9 yes 11.6 yes
RLS -1.7 -1.5 11.9 yes 11.5 yes

RWLS -1.7 -1.5 12.0 yes 11.6 yes
Kihei EPR -3.4 -0.4 15.1 yes 12.9 yes

AOR -6.0 -4.2 30.0 no 14.1 yes
JK -2.5 -2.5 11.8 yes 10.6 yes

MDLLOW -6.9 -2.4 13.3 yes 11.9 yes
MDLZERO -9.9 -4.2 16.8 no 15.5 no

LAD -2.2 0.7 12.5 yes 15.0 no
OLS -5.0 -5.7 9.0 yes 8.7 yes
WLS -6.1 -6.2 8.7 yes 8.5 yes
RLS -4.6 -5.1 8.7 yes 8.2 yes

RWLS -5.5 -5.7 8.6 yes 8.0 yes
West Maui EPR -6.6 -4.8 10.2 yes 10.0 yes

AOR -10.1 -8.1 17.2 no 11.3 yes
JK -4.9 -6.4 8.9 yes 8.3 yes

MDLLOW -3.5 -4.8 9.6 yes 8.7 yes
MDLZERO -4.0 -4.8 10.8 yes 10.0 yes

LAD -6.2 -4.5 9.6 yes 9.5 yes
OLS -19.1 -2.3 26.0 yes 31.2 yes
WLS -20.5 -1.9 27.5 yes 31.0 yes
RLS -19.4 -1.9 26.1 yes 30.8 yes

RWLS -20.7 -1.6 27.6 yes 30.7 yes
North Shore EPR -14.5 -0.4 24.5 yes 31.8 yes

AOR -12.8 4.7 27.5 yes 35.5 yes
JK -19.4 3.2 26.4 yes 33.0 yes

MDLLOW 1.4 7.0 41.5 no 35.2 yes
MDLZERO 19.8 13.0 53.7 no 41.7 no

LAD -20.8 -0.6 26.4 yes 29.7 yes
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Table 7. Kolmogorov-Smimov (K-S) results of synthetic analysis. H = 1: distributions
are significantly different. H=O: distributions are not significantly different.

A lJ C D E F
Without Stonu Point Storm· middle position Storm· end position

Comparison of Less Noise More Noise Less Noise IMore Noise Less Noise More Noise
Method 1 Method 2 H H H H H H

OLS WLS 1 0 0 0 0 0
OLS RLS 0 0 0 0 1 0

OLS RWLS 1 0 0 0 1 0

OLS JK 0 0 0 0 0 0
OLS EPR 0 0 0 1 1 1

OLS LAD 0 0 0 1 1 0

OLS WLAD 1 0 0 0 I 0
OLS AOR 1 I I 1 I 1
OLS MDLZERO I 1 1 I I 1

OLS MDLLOW 1 1 1 1 1 1

WLS RLS 1 0 0 0 I 0

WLS RWLS 0 0 1 0 1 0
WLS JK 1 0 0 0 0 0
WLS EPR 1 1 0 1 1 I
WLS LAD 1 I 0 1 1 0

WLS WLAD 0 1 1 0 1 0
WLS AOR I I 1 1 1 1
WLS MDLZERO 1 1 I 1 1 I
WLS MDLLOW 1 1 I 1 1 1

RLS RWLS 1 0 0 0 0 0
RLS JK 0 0 0 0 1 0

RLS EPR 1 0 0 1 1 1
RLS LAD 0 0 0 1 0 0
RLS WLAD 0 0 0 0 0 0
RLS AOR 1 I 1 1 1 1
RLS MDLZERO 1 1 I 1 I 1
RLS MDLLOW 1 I 1 I 1 1

RWLS JK 1 0 0 0 1 0
RWLS EPR 1 1 1 1 1 1
RWLS LAD 1 1 1 1 0 0
RWLS WLAD 0 1 0 0 0 0
RWLS AOR 1 1 1 1 1 1
RWLS MDLZERO 1 1 1 1 1 1
RWLS MDLLOW 1 1 1 1 1 1

JK EPR 0 0 0 1 1 1
JK LAD 0 1 0 1 1 0
JK WLAD 0 0 0 0 1 0
JK AOR 1 1 1 1 1 1
JK MDLZERO 1 1 1 1 1 1
JK MDLLOW 1 1 1 1 1 1

EPR LAD 0 0 0 0 1 1
EPR WLAD 1 0 1 0 1 1
EPR AOR 1 1 1 1 1 1
EPR MDLZERO 1 1 1 1 1 1
EPR MDLLOW 1 1 1 1 1 1

LAD WLAD 1 0 1 0 0 0
LAD AOR 1 1 1 1 1 1
LAD MDLZERO 1 1 1 1 1 1
LAD MDLLOW 1 1 1 1 1 1

WLAD AOR 1 1 1 1 1 1
WLAD MDLZERO 1 1 1 1 1 1
WLAD MDLLOW 1 1 1 1 1 1

AOR MDLZERO 1 1 1 1 1 1
AOR MDLLOW 1 1 1 1 1 1

MDLZERO MDLLOW 1 1 1 1 0 1
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Table 8. Binning Trends.

Region Beach Wave Climate ofRegion Offshore Bottom Comments Overall Bin trends
Southem Beaches

Big Beach south swell, refracted north No friugiug reef northern portions of a beach
Little Beach swell and tradewind waves are distinct from southem

Maluaka no fringing reef portions.
Kihei Onuoli----....-..----..-......__.. ----------------------......_............ ......._--------------.............. ...................._-----------....-..................... ------------..............--......_-----

Central Beaches
Kaml minimal south swell and No fringing reef
Kam2 refracted north swell sandy bottom unifonnity within beaches
Kam3 occasional kona stonn waves
Ulna seawall

Kaanapali erosion on one end of the
West Maui North Kaanapali north pacific swell, south portions have fringing reefs beach and accretion on the

Keonenui swell and kona stonn waves rocky and sandy bottoms seawall other end of the beach.
Kapalua
Kaehu north pacific swell and eastem and westem sections

North Shore Kanaha tradewind waves fringing reefs 5 groins throughout beach of the beach are distinct
Sprecklesville offshore rock olatfonn, revetment
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Table 9. Forecasts at Kanaha (North Shore). Removing the 1960 tsunami position does
not improve the prediction.

Method
OLS
WLS
RLS

RWLS
EPR
AOR
JK

MDLLOW
MDLZERO

LAD

Mean IEIPI (m)
all points w/o storms

11.3 12.9
11.4 12.8
11.2 12.9
11.4 12.8
11.4 13.0
11.5 13.1
11.3 12.9
11.3 12.5
11.3 12.5
11.3 13.1
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Table 10. Forecasts at Kahului (North Shore) after removing predictions made using data
from T-sheet and the 1960 shorelines.

Method
OLS
WLS
RLS

RWLS
EPR
AOR

JK
MDLLOW
MDLZERO

LAD

Mean IEIPI (m)
all points w/o storms

8.9 9.2
10.1 9.1
9.0 9.2
10.1 9.1
9.2 9.2
11.0 11.4
8.9 9.8

21.6 9.5
28.8 10.8
10.2 8.7
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Table 11. Hindcast uncertainties of the known position and the predicted positions with
all points and without stonn data.

95% C.I. 95% C.I.
Known all points w/o storm
Position Average predicted Average predicted

Area Year Uncertainty (m) Position uncertainty (m) Position uncertainty (m)
Maluaka 1931 8.81 15.71 23.67
Onuoli 1931 8.81 23.31 38.67
Kam 1 1912 10.57 114.63 132.41
Kam2 1912 10.57 64.79 117.75

Natural Kam3 1912 10.57 88.43 105.44
Beaches N. Kaanapali 1912 9.17 28.03 27.16

1932 7.78 22.71 21.90
Waiehu 1899 6.55 28.04 62.11

1912 6.76 23.00 49.90
Waihee 1912 6.44 22.73 87.38

1929 6.25 18.52 69.88
Honokowai 1912 8.39 87.62 173.37

Kahului 1899 8.45 68.69 52.57
1912 8.61 61.24 46.37

Engineered Kanaha 1912 9.17 56.76 131.00
Beaches 1929 7.62 46.54 105.26

N. Kihei 1900 7.45 42.67 63.03
Ulua 1912 10.42 15.16 35.11

Sprecklesville 1912 10.18 141.39 919.97
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APPENDIX B: FIGURES

Figure 1. Published shoreline change rate methods applied to one data set of 7 shoreline
positions. A positive slope shows erosion, while a negative slope shows accretion. The
shoreline positions are signified as crosses and the diamonds represent outliers.
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Figure 2. New shoreline change rate methods. The crosses represent shoreline position.
The vertica1lines are 1- (T error bars associated with each shoreline position and the
diamonds correspond to outliers.
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Figure 3. Three classified regions within Maui that experience different weather
conditions and wave dynamics.
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Figure 4. Top - Shore normal transects are spaced 20 m alongshore. In this example,
transect window length is 4. The erosion rate ofthe first four adjacent transects (1) is
compared to the rate of all the other transects in this beach. Next, the erosion rate of the
next four transects (2) is compared to the rate of all other transects. This continues
throughout the beach (3 & 4) until the rate of the last four transects is compared to the
rest of the beach. The window spacing then increases to 6, 8, 10, etc. transects. Bottom­
Another visualization of transect binning at a window size of 4. The numbers 1,2, and 3
correspond to the numbers in the figure above. R[ is the binned erosion rate of 4
transects. R2 is the binned erosion rate of the rest of the beach. A t-pooled test examines
whether R[ is significantly different from R2•
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Figure 5. Vertical lines represent transects. Y-axis is the window size of the transect
grouping. The first window size is 4, meaning 4 adjacent transects are grouped for each
rate calculation. Horizontal lines represent groups of transects whose rates did not agree
with the binned rates of all other transects (t-test). A t-test is calculated for any
overlapping transects within a window size (represented by boxes).
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Figure 6. T-test results within each window size. At window size 4, the overlapping
transects are not significantly different from each other (A). At window size 6, two
groups were identified that were significantly different from each other (B).
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Figure 7. Clusters of transects (or cells) are identified based on t-tests ofall windows
with common transects. For this beach, there are two distinct clusters (labeled 1 & 2).
One side of the beach has significantly different long-tenn rates compared to the other
side of the beach. Transects that are shared by both clusters are considered transitional
zones.
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Figure 8. Each cluster is assigned a color and each transect within a cluster is given a
shade ofthat color. Transect shade corresponds to the frequency of windows that
intersect the transect. Transects with a higher frequency ofwindows will be darker than
transects with a lower frequency of windows. Groups A and C represent two distinct
clusters. Group B represents the overlap between Groups A and C.
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Figure 9. Predictions from a transect in Kahului. Predictions were made using the T­
sheets and 1960 aerial photograph positions. Although a tsunami affected the area 5
months before the 1960 photograph, accretion is predicted. Erosion at the rate of3 m/yr
occurred between 1960 and the next position (1975).
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Figure 10. Histogram of 1000 rates calculated from synthetic beach time series with low
noise. The diamond depicts the true erosion rate at 0.1 m/yr.

OLS WLS RLS RWLS
Jl- 0.098
0- 0.401

0:1

11- 0.105
0- 0.295

0:1

11= 0.102
0= 0.375

0:1

Jl= 0.107
0: 0.305

0:1

0.05

o
·2 0

JK
2 0

EPR
2 0

LAD
2 0 2

WLAD
11- 0.099
0- 0.378

0:1

Jl= 0.097
0" 0.471

0]

11= 0.095
0= 0.429

0.1

Jl= 0.098
0= 0.349

0:1

·10 0 10

o 2
MOL LOW

OA
IJ.= 0.153
0= 1. 69

0.3

0.2

0.1

oL--_-+-_---'o'----+-----'

0.05

o
2 -2 0 2

MOL ZERO

OA
11= 0.215
0= 2.078

0.3

0.2

0.1

o 2 ·10 0 10

erosion rate (mIyr) ------------)~

o
AOR

Jl=0.075
0 .. 0.506

o
·2

0.05

59



Figure 11. Histogram of 1000 rates calculated from synthetic beach time series with high
noise. The diamond depicts the true erosion rate at 0.1 m/yr.
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Figure 12. Histogram of 1000 rates calculated from synthetic beach time series with a
storm at a middle point and with low noise. The diamond depicts the true erosion rate at
0.1 mlyr.
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Figure 13. Histogram of 1000 rates calculated from synthetic beach time series with a
stonn at a middle point and with high noise. The diamond depicts the true erosion rate at
0.1 m/yr.
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Figure 14. Histogram of 1000 rates calculated from synthetic beach time series with a
storm at the end point and with low noise. The diamond depicts the true erosion rate at
0.1 m/yr.
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Figure 15. Histogram of 1000 rates calculated from synthetic beach time series with a
stonn at the end point and with high noise. The diamond depicts the true erosion rate at
0.1 rn/yr.
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Figure 16. Kaanapali, Maui. Results from binning. Eversole and Fletcher (2003)
identify transect #105 as an inflection point.
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Figure 11. Flow chart showing steps in creating a hazard map. Methods appropriate for
Hawai'i are highlighted in gray. We choose RWLS over WLAD due to the simplicity of
RWLS..
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Figure 18. An example of an Erosion Hazard Map. The setback (red line) is surrounded
by 1- (j confidence bands (blue lines). The hazard zone is highlighted in yellow.

, ...

67



APPENDIX C: ERRORS AND UNCERTAINTIES

To calculate erosion rates on beaches in Hawaii, we use the beach toe as our shoreline

position, which is digitized from images of varying years. The beach toe is typically

coincident with the position of lower low waterline. The high contrast ofbeaches in

Hawaii make it difficult to identify the MHWL in aerial photographs, hence, beach toe is

used as the shoreline reference in this study (Coyne et aI., 1999; Fletcher et aI., 2003).

Many errors are introduced in the delineation of shorelines. For example, using aerial

photographs taken at low tide will influence the location of the digitized shoreline, which

in tum, influences the resulting erosion rate. We identify and quantify the various errors

to assess the uncertainty of the position. The errors are squared and summed to get a total

positional uncertainty. We assume the total uncertainty follows a Gaussian distribution,

since the Central Limits Theorem states the sum of many sources of uncertainty tends

toward a normal distribution (Draper and Smith, 1998). Identifying the probability

distribution for each error process (e.g. tidal fluctuation, seasonal variance, etc.) provides

us with the tools to calculate the individual error uncertainty.

We use two different images to generate our shoreline positions - topographic

surveys (T-sheets) and aerial photographs. Only T-sheets that pass the National Map

Accuracy Standards are used in this analysis (Fletcher et aI., 2003). The surveyors of

these T-sheets designated the Mean High Water Line (MHWL) as the shoreline position.

We offset the MHWL in T-sheets to the beach toe.

We calculate the total positional uncertainty using the following equation:
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Etp =~Ed2 + Ep 2+ Es2+ Er2+ Etd2+ Ets 2+ Ee2

where Ed = digitizing error, Ep = pixel error, Es = seasonal error, Er = rectification error,

Etd = tidal fluctuation error, Ets = error plotting on aT-sheet, and Ec = error in

converting from MHWL to beach toe on aT-sheet. Errors for T-sheets include Ets and

Ec, and exclude Er and Etd. Aerial photographs do not include Ets and Ec.

An explanation of each measurement and the uncertainty contributing to the

measurement is discussed below. We also examine the probability distribution of

each error and the reasoning behind the method we used to calculate the error.

1. Digitizing Error (Ed)

Only one member of the Coastal Geology Group digitized the beach toe for all

photographs and T-Sheets for any given portion of the Maui shoreline. This eliminated

different beach toe interpretations from multiple users. The user visually determined the

shorelines onscreen in PCI Geomatics using his knowledge of the area to interpret the

beach toe.

If the analyst took repeated measurements (preferably>100) of the beach toe the

resulting distribution would resemble a Gaussian distribution. Most measurements would

concentrate around a central value (e.g., mean) with a decreasing number of

measurements occurring away from that central value (Davis, 2002). Because three data

runs is not enough to identify a distribution, we digitized one section of a beach in Maui
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(Little Beach) 50 times. Figure 2 is the histogram ofthe position ofthe beach toe on one

transect, which resembles a Gaussian distribution.

The standard deviation of the differences between the three runs is the digitizing

error. An updated table of digitizing errors from John Rooney's (Unpublished)

explanation of uncertainties called EroRateUncert, is below.

Year 1997 1960 1949 1912 1900

Scale 5,000 10,000 7,300 20,000 10,000

Color/B&W/T- Color Color B&W T-sheet T-sheet

Sheet

Ed 0.7431 0.7898 0.9558 5.1350 1.6794

Table 1: Digitizing Errors

According to Rooney's document, if one ofthe above digitizing errors has similar

attributes (e.g. scale) to a year of a photo or T-sheet not mentioned above, that Ed (error)

could be used for the unmentioned year. Ifno similar attributes exist, then the digitizing

error should be calculated for that year.
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Measurement (m)

Figure 1: Gaussian (Normal) Distribution

1l~------

l~

•III "I

Figure 2: A histogram of 50 Beach Toe Interpretations.

2. Pixel error (Ep)

We attempt to measure the beach toe accurate to the pixel size of the image. The

pixel size in the orthorectified images is 0.5 m, which means anything within 0.5 m

cannot be resolved.

Assuming we can identify the beach toe to the nearest two pixels, we know our

maximum and minimum errors are
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toe is found within ± 0.5 m. This means we have an equal probability of identifying

beach toe correctly within ± 0.5 m. Therefore, the probability distribution is uniform.

To calculate the pixel error, we generate synthetic data (>10000 points) between -0.5

and +0.5 using the 'rand' function ('rand' generates data from a uniform distribution) in

Matlab. Ifwe plot the histogram of the data, it will look similar to Figure 3. We then

take the standard deviation of the data to get a 1- (j error,·or Ep. Ep = 0.289 m.

.~
IIIc_------fo-----___.
CI.Io
.~
:51
~Ie
Q.

-0.5 Measurement (m) 0.5

Figure 3: Uniform Distribution.

3. Seasonal error (Es)

Similar to tidal fluctuation, we did not select aerial photographs based on seasonal

variation. It is important to note some beaches in Maui tend to accrete in summer and

erode in winter, while other beaches tend to do the opposite. We chose to account for

seasonal changes as an uncertainty in the shoreline position.

We model the seasonal uncertainty with a uniform distribution (see figure 3). Like

tides, seasonal change occurs in a cyclical manner. The probability of the
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photograph depicting a summer shoreline is equal to the probability of the photograph

describing a winter shoreline. Similar to tides, a "general" gaussian curve (see figure 4)

is a more accurate approximation to the distribution due to seasonal anomalies; however,

like tides, a uniform distribution is an easier and adequate substitution.

We digitized the shoreline position of two aerial photos - summer 1987 and winter

1988 - to identify the difference in position between the two seasons. We determine the

mean absolute value (x ) and standard deviation absolute value ( 0') of the differences

between the two seasonal shorelines. Analogous to the tide values, we conservatively

take ± x+ 20' as our minimum and maximum value for that specific study area. We use

the rand function to generate data (>10000 points) between the minimum and maximum

value and take the standard deviation of the data, which is the Es. Es will vary for each

study area and has a range of 1.157 - 7.089 m.

4. Rectification Error (Er) [Aerial Photographs only]

Aerial photographs are corrected, or rectified, to reduce displacements caused by lens

distortion, earth curvature, refraction, camera tilt, and terrain relief (Welch and Jordan,

1996). Without the rectification of aerial photographs, these displacements would cause

significant errors in identifying shoreline positions. We orthorectify our photos by

applying a USGS (http://www.usgs.govD 10 m digital elevation model (DEM) and

ground control points (GCP) with map coordinates to the photo (Welch and Jordan,

1996). The Coastal Geology Group at the University of Hawaii amassed a database of

73



GCPs in Maui using a differential GPS with sub-meter accuracy.

Because we have several independent errors within the rectification process, we can

assume a Gaussian, or normal, distribution due to the Central Limits Theorem (Draper

and Smith, 1998). The Central Limits Theorem states that if many sources contribute

error, the resulting sum of the errors, regardless of the probability distribution of each

error, tends toward a normal distribution.

Rectification error is produced in PCl Geomatics, Inc.

(http://www.pcigeomatics.com/). The Root Mean Square (RMS) error is calculated, in

pixels, for each year and includes both X and Y components. We calculated the total

RMS error using Pythagoras theorem - .JX 2 + y2 - and then multiplied by 0.5 m/pixel

to get the error in meters. The rectification error (Er) will vary for each year at each

geographic study area on Maui, but is not calculated for T-sheets. The range for Er is

0.100 - 6.050 meters.

5. Tidal fluctuation error (Etd) [Aerial Photographs only]

We obtained aerial photographs without regard to tidal cycles, which results in

inaccuracies on the digitized beach toes. Rather than correcting the measurement of

shoreline positions due to tides, we calculate the possible fluctuations as an uncertainty

that affects the true position of the shoreline.

We assume a uniform distribution (figure 3) for tidal fluctuation. Because the tides

are cyclical fluctuating between low and high, we have an equal chance of taking a
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photograph of the shoreline at different stages of the tides. This means the probability of

the photograph taken at high tide is identical to the probability of it taken at low tide. We

can test this by recording the position of the beach toe at the same tide height multiple

times. In reality, a "general" gaussian distribution (figure 4, (Taranto1a, 1987)) is a better

estimate of the probability distribution because spring and neap tides are higher and

lower than normal tides; however, using a conservative application of a uniform

distribution is sufficient in our case.

The horizontal movement of the beach toe on several beaches in Maui was monitored

continuously over a spring tidal cycle. The displacement of the toe was found to be

± 1.25 meters. To be conservative, we use ± 2.5 , or twice the value, as our maximum

and minimum values for a uniform distribution. The standard deviation of a uniform

distribution that has max and min values equal to ± 2.5 is 1.4 m. This can be calculated

numerically by using the rand function to generate values (>10000 points) between

± 2.5. A histogram of the data looks similar to figure 1 with the maximum and

minimum values equal to ± 2.5. The standard deviation of the data is the Etd. Etd = 1.4

m.

Measurement (m)

Figure 4: General Gaussian Distribution. This distribution is similar to a uniform
distribution yet has tails similar to a gaussian curve.
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6. Plotting T-sheet error (Ets) [T-sheets only]

The plotting T-sheet error is based on Shalowitz (1964) thorough analysis of

topographic surveys in Shore and Sea Boundaries. There are three major errors involved

in the accuracy of these surveys: (1) measuring distances has an accuracy of 1 meter, (2)

planetable position has an accuracy of2-3 meters, and (3) delineation of the actual mean

high water line is accurate to about 3-4 meters. Since most of the maps were made in the

field, field notes usually do not exist. According to Shalowitz (1964), large errors do not

exist in T-sheets because a continual check of the survey was done through triangulation.

The probability distribution for total plotting error is Gaussian (see Figure 1). Ifwe

took multiple measurements of the distances, the planetable position, and the delineation

of the mean high water line, and plotted the measurements on a histogram, most

measurements would reflect the mean value while some measurements would be slightly

off. Similar to rectification error, we can cite the Central Limits Theorem that multiple

sources of errors tend towards a gaussian distribution (Draper and Smith, 1998).

We calculate the total plotting error (Ets) for all T-sheets as a sum of squares of the

three distinct errors mentioned above. We use 1 m for the error in distance, 3 m for the

planetable accuracy and 4 m for the delineation of the mean high water line to compute

Ets. Ets = 5 m.

7. Conversion error for T-sheets (Ec) [T-sheets only]

As mentioned earlier, the surveyed shoreline on T-sheets is the Mean High Water

Line (MHWL). Considering that generated shorelines are predominantly from aerial
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photographs, we convert the shorelines from T-sheets to the beach toe to minimize the

resulting errors (Fletcher et aI., 2003; Rooney et aI., 2003). The Coastal Geology group

collected five years of beach profile data on twenty-seven beaches in Maui that was used

to offset the MHWL to the contemporaneous beach toe (Fletcher et aI., 2003; Rooney et

aI., 2003). The offset is the median of the difference between the MHWL and the beach

toe. For beaches without profiles, the offset from similar littoral areas was used to

migrate the shoreline in question (Fletcher et aI., 2003; Rooney et aI., 2003).

We assume the probability distribution of this error is Gaussian (see Figure 1).

Similar to the digitizing error, the range of data will surround a central value (Davis,

2002). We took values of the offset (median) - difference between MHWL and beach

toe from multiple profiles in North Kaanapali ( a total of 63 points) and made a histogram

(see figure 5). The histogram resembles a Gaussian distribution. By increasing the

number of points, the resemblance will improve.

We subtract the median offset from the difference between MHWL and beach toe to

identify the range of values around the median (Median Offset - (MHWL - Beach Toe)).

The standard deviation of this difference is the conversion error (Ec). Ec will vary for

each profile area on Maui with a range of 1.967 - 7.507 meters.
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Figure 5: A histogram of the median offset for T-sheets subtracted by (MHWL-beach toe) from
North Kaanapali. The histogram resembles a Gaussian distribution.
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APPENDIX D: LAD EQUATIONS

Following L. Neil Frazer's homework assignment in GG685 (Inverse Theory), the

calculations for Least Absolute Deviation (LAD) are presented below. LAD assumes a

two-sided Laplace distribution, which makes it more robust with respect to outliers than

least squares.

The first step in identifying the LAD rate is to calculate the likelihood function for the

slope (b I ) and intercept (bo). The likelihood function, in this case, is the posterior density

function (df) for both slope and intercept. The equation for the likelihood function ( (j)

IS:

(1)

where v is the estimator of the standard deviation, which is calculated by the equation:

(2)

where N is equal to the sample size. In the case ofWeighted Least Absolute Deviation

(WLAD), v is simply the uncertainty at each Yi. A grid search is performed to calculate

either the misfit function (Ii IYi - bo - bl Xi I) or the likelihood function ( (j) over a range

of slopes and intercepts. The best fitting line is the one whose slope and intercept

minimizes the misfit function or maximizes the likelihood function (the results ofboth

the misfit and likelihood function will be the same).
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To compute the uncertainty of the slope (LAD rate), the marginal posterior df of the

slope (UbI (bl » is calculated by integrating the joint pdf (in this case, the likelihood

function) over the intercept. The following is the equation for the marginal posterior df

of slope:

OCJ

CYbl (bI ) = fdboCY(b I , bo)
-OCJ

(3)

Once the marginal posterior df is estimated, its cumulative distribution is calculated using

the following equation:

hi

F(b!) = fdbI 'cr(bI ')

-00

(4)

By interpolating F(bl), the slope uncertainty can be identified at the percentile of interest.
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