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ABSTRACT

In this paper, machine condition monitoring techniques based on multilayered feedfoward

neural network (MLFFNN) where the weights in the network are updated based on node­

decoupled extended Kalman filter (NDEKF) training method are proposed. Neural network

based techniques have been widely recognized as powerful approaches for condition mon­

itoring system, and the use ofNDEKF has better performances in computational complex­

ity and memory requirement among the Kalman filtering algorithm family. The condition

monitoring system detects and identifies conditions of components through the neural net­

work based system identification of components. Sensor signals in both time and frequency

domains are analyzed to show the effectiveness of the condition monitoring scheme. The

performances of diagnostic tools presented in this thesis are evaluated using the cabin tem­

perature control system that is specifically for Boeing 767 as practical application example,

and the results show the effectiveness of the developed techniques.
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Chapter 1

Introduction

Most of the maintenance actions today are carried out by the run-to-failure tech­

nique. In the past the asset condition was monitored by the five senses of the operator.

With the run-to-failure technique, one lets the component, sub-system, or system run until

they break down or an obvious fault occurs. It is absolutely essential to increase productiv­

ity and reduce operational costs by adopting a system that has the capability of predicting

accurate and reliable time-to-failure.

System diagnostics is defined as a technology intended for timely, non-destructive

detection and identification of incipient failures of hardware caused by system abnormali­

ties. The diagnosing technique is to process the sensory data and perform diagnostic rea­

soning by comparing the measurements against the machine fault signatures. Typically,

diagnosis methodologies are subdivided into two classes; one is model-based signal pro­

cessing technique, and the other is a pattern recognition method. In case where the process

can be represented by a model, model-based diagnostic technique can be applied to ac­

count for variations in the measurements caused by changes in operating conditions. The

technique then detects faults through a use of parametric identification techniques. When

suitable process models are not available or when they are too complicated to be extracted
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from data, nonparametric identification techniques are used as a diagnostic system. In ei­

ther case, the difference between sensor measurements and expected values in normal and

fault conditions are used to identify the current condition.

In this thesis, pattern recognition based fault diagnostic system based on a neural

network is described. Neural network's learning feature is effective in capturing the time­

varying and individual behavior of a complex physical system. Therfore, neural network

can improve the fidelity of the machinery used.

Originally inspired by the structure of the human brain, an artificial neural net­

work is a mathematical tool modeled after the networks of nerve cells in the brain. The

primary advantage of neural networks over traditional modeling is their ability to learn pat­

terns and extract features. This ability is used as a powerful tool in treating time-varying

characteristics, and it offers significant potential in practical applications that include pat­

tern mapping, pattern classification, and prediction.

Figure 1.1 describes the fault diagnosis system in a block diagram form. In par­

allel with the system that can consist of actuators, process dynamics, and sensors, neural

networks with the characteristics of possible conditions are used for residual generation.

Based of the result of residual generation, the system can be diagnosed through neural

network based classification techniques.

The ability of neural network to approximate an unknown input-output mapping

can be exploited through system identification technique as described by the Figure 1.2,

where the output of neural network Yi is produced in response to an input vector Xi. The

difference between the plant output di and the network output Yi provides the error signal
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Figure 1.1: Fault diagnosis system in a block diagram form.
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Input
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Figure 1.2: Block diagram of system identification.

Output

vector ei that is used to adjust the parameters of the network to minimize the difference of

the plant and the network.

The Kalman filter is well known as a state estimation method for a linear sys­

tem, while the Extended Kalman filter (EKF) is known as a state estimation method for a

nonlinear system. The filter can also be served as a basis for a number of recent neural

3



network training algorithms. A multilayered feedfoward neural network (MLFFNN) is a

nonlinear system having a layered structure, and its learning algorithm is regarded as a pa­

rameter estimation for such a nonlinear system. Since this EKF-based learning algorithm

approximately gives the minimum variance estimate of the linkweights, the convergence

performance is improved compared to the popular standard backpropagation (BP) algo­

rithm.

Although the BP algorithm has shown successful results compared to the methods

invented in the mid 1980s, many researchers have been looking for alternative methods that

yield better performance, such as training speed, mapping accuracy, and generalization.

The most promising training methods to satisfy these are the ones that update weights

based upon the second-order derivative information, while the standard BP is based on the

first derivative. Some popular second order methods are the Quasi-Newton, Levenburg­

Marquardt, and Conjugate gradient techniques. However, these often converge to local

minima because of the lack of a stochastic component in the weight update procedures. The

EKF, on the other hand, is also a second order neural network basis, but its performance is

more practical and effective compared to the methods mentioned earlier [1].

In this thesis, the Node Decoupled Extended Kalman Filter (NDEKF), which re­

duces the computational complexity and memory usage dramatically, is used as a diagnos­

tic reasoner for nonlinear dynamical systems in both time domain and frequency domain.

The methods used to analyze the sensor signals include probabilistic analysis, time domain

analysis, and frequency domain analysis [15][16][17][18][19]. Although the frequency

analysis approach is the most popular method among those due to the availability of the

Fourier Transform technique that is suitable to extract vibrational features of components

with periodical movements (e.g. bearing[15]), it would be better to use time domain anal-
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ysis if transients occur at a certain phase of rotation (e.g. detecting imminent failure due to

crack formation [16]).

The prognostic schemes that uses Kalman filtering based neural network have

been introduced by Dash [7] and extended Kalman filtering by [8][9][10]. The node­

decoupling scheme can be used in these prognostic techniques as well.

The remaining part of this thesis is organized as follows: A description of neural

network with Kalman filtering that is used for fault diagnosis is presented in the chapter 2.

Chapter 3 describes a standard cabin temperature control system used on current aircrafts.

A set of simulations for introduced fault detection and identification schemes applied to

the system model are presented in chapter 4 in order to validate the methods in industrial

applications. Finally in chapter 5, the discussions and future work are presented.
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Chapter 2

Neural Network with Kalman Filtering

Algorithm for Fault Diagnosis

The fault detection and identification (FDI) system utilizes a bank of dynamic

input-output observers, where a hybrid of neural network and Kalman filtering scheme

can be utilized. In this chapter, the idea of neural network with its training algorithm

based on Kalman filtering algorithm and the failure detection and identification scheme are

introduced. The section of Kalman filtering includes the idea of extended Kalman filtering

algorithm, which is applied for nonlinear models, and node-decoupled extended Kalman

filtering algorithm that requires less computational loads than EKF does. Both time domain

and frequency domain analyses used for an FDI scheme are then introduced with neural

network based classifier.

2.1 Neural network

A parallel processing structure that has a large number of processors and many

interconnections are utilized in neural networks. Although processors used in neural net-
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works are much simpler than typical central processing units (CPUs), there are hundreds

of thousands of processors linking their neighbors. The power of neural network lies in

this interconnected network of the tremendous number of processors. An example of typ­

ical processing unit of an artificial neural network is depicted in Figure 2.1. The multiple

inputs, each arriving from another unit, are connected to the processing unit. Each inter-

connection has an associated connection strength called weights, given as WI, W2, ... , Wn-

The processing unit performs a weighted sum on the inputs and uses a nonlinear function

f to compute its output. The computed outputs are then sent to the target cells along the

output connections.

Inputs

!('i.)

/---
'i.

Processing Unit j

Connecdon Strength (Weight)

)

Outputs

Figure 2.1: An example of typical processing unit of an artificial neural network.

In a layered neural network the neurons are organized in the form of layers. When

there are one or more hidden layers, which are the layers between input layer and output

layer, the neural network is called multilayered feedfoward neural network (MLFFNN).

The purpose of hidden neurons is to intervene between the input and the network output in

some useful manner. With the addition of one or more hidden layers, the network obtains

an ability to extract higher-order statistics.

An architectural graph for layout of MLFFNN for the case of 100 input neurons,

20 hidden neurons in the first hidden layer, 10 hidden neurons in the second hidden layer,

and 100 output neurons (abbreviated as 100-20-10-100 neural network) is illustrated in
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Figure 2.2. The bias units provide a constant term in the weighted sum of the units in the

next layer and improves the convergence properties of the network.

100 Nodes 20 Nodes 10 Nodes 100 Nodes

Input Layer Hidden Layers Output Layer

Figure 2.2: Diagram of 100-20-10-100 MLFFNN neural network.

The input signals to the neural network are supplied from the input layer and sent

to the neurons (computational nodes) in the second layer (i.e., the first hidden layer). The

output signals of the second layer are used as inputs to the third layer, and so on for the rest

of the network. The set of output signals of the neurons in the output layer of the network

constitutes the overall response of the network to the inputs supplied at the input layer.

2.2 Kalman Filtering Algorithm and Neural Networks

A Kalman filter is an optimal iterative (on-line) data processing algorithm that

is used for stochastic estimation from noisy sensor measurements. It can also be looked

as a Predictor-Corrector type estimator since a Kalman filter predicts the estimate at some

time and corrects it using the prediction error. A Kalman filter is optimal in a sense that

it incorporates all the available information (measurements) regardless of their precision
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[3],[5]. The Kalman filtering is an effective tool, especially when the signal to noise ratios

(SNR) are low, and improves the performance of the FDI system. In this section, 1. The

extended Kalman filtering algorithm, which is used for the estimation of a state vector in

a nonlinear model of a dynamical system, 2. The decoupled extended Kalman filtering

algorithm family that provides an approximation to extended Kalman filter, and 3. The

node-decoupled extended Kalman that provides the approximation based upon the nodes

are introduced.

2.2.1 Extended Kalman Filtering and Neural Networks

Numerous methods have been proposed for estimation methods of general non­

linear systems, and the best known among those is the Extended Kalman filter (EKF)

[6],[13]. It is also known as a parameter estimation method with augmentation of the state,

and this can also be regarded as the learning algorithm of a multilayered feedfoward neural

network with determination of the weights of the network iteratively.

The EKF is known not only as an optimal recursive data processing algorithm,

but also known as the best second-order neural network training method that is practi­

cal and effective. During the training of a neural network with EKF algorithm, not only

the weights, but also an error covariance matrix that encodes second-order information is

maintained. This EKF procedure was developed in late 1980s to enable the application of

feedfoward and recurrent neural network in various fields including signal processing, con­

trol, and pattern recognition, and is shown to be substantially more effective than standard

BP [1]. The disadvantage of the EKF is a computational complexity due to second-order

information that correlates every pair of network weights.
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A behavior of neural network can be described by the following nonlinear dy-

namical system:

Wk+l f(k, Wk) + Wk Process equation

Yk h(k, Wk) + Vk Measurement equation

Here, the f(k, Wk) is a nonlinear equation of the dynamical system with Wk and

Vk representing the process and measurement noise respectively. The nonlinear function

h(k, Wk) in the measurement equation relates the state Wk to the measurement Yk. The idea

of extended Kalman filter is to extend the Kalman filtering through a linearization of the

two equations above at each time instant with the most recent state estimate. The summary

of extended Kalman filtering training algorithm is following:

EKF Algorithm

Process Equation:

Measurement Equation: Yk = hk(Wkl Uk) + vk

Process Noise: Wk rv N[O, QJ E[Wk, wTJ = { Q,
0,

T {R'Measurement Noise: Vk rv N[O, R] E[Vk' vl J =
0,

where

Wk: Weight Parameter Vector

Yk: Desired Response Vector

hk : Nonlinear Function

Uk: Input Vector

10
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Ak [Rk + H[PkHkrl

Kk PkHkAk

Wk+l Wk + Kkck

Pk+1 Pk - KkH[Pk + Qk

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

where

w: Estimated value of weight w fOf group i

P: Approximate error covariance matrix of w for ith group's weights

K: Kalman filter gain matrix

c: Error between desired and actual outputs

R: Measurement noise covariance matrix

Q: Process noise covariance matrix

H: Matrix of derivatives of the network's outputs with respect to all trainable

weight parameters

The vector Wk+l is the estimates of the state (i.e. weight) of the system at time

step k. The Kalman filter residual vector is defined as Ck = Yk - Yk, where Yk is the desired

vector and Yk is the network's output vector for kth presentation of a training pattern. Figure

2.3 shows the signal flow diagram for extended Kalman filtering neural network training.

The EKF training procedure required for one step is divided into 5 steps as fol-

lows:

1. An input training pattern Uk is propagated through the network to produce an output

vector Yk' The Kalman filter residual vector C is also generated in this step.

2. The matrix of derivatives of the network's outputs Hkare obtained by backpropaga­

tion.

11
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Figure 2.3: Neural network based on Extended Kalman Filter (EKF) as training algorithm.

3. The Kalman filter gain matrix is computed as a function of the derivative matrix H k>

the approximate error covariance matrix Pk , and the measurement covariance noise

matrix Rk. The global scaling matrix Ak is computed in this step as well.

4. The weight vector of the network is updated using the computed Kalman filter gain

matrix K k , the Kalman filter residual c, and the current values of the weight vector

5. The approximate covariance matrix is updated using the Kalman gain matrix K k,

the current values of the approximate error covariance matrix Pk , and the derivative

matrix Hk •
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2.3 Decoupled Extended Kalman Filter Family

While the EKF develops and maintains correlations between each pair of network

weights, Decoupled Extended Kalman Filter (DEKF) family provides a natural simplifica­

tion of the standard extended Kalman filtering algorithm by ignoring the interdependence

of mutually exclusive groups of weights, thereby allowing reductions of computational

complexity and resources. The family of DEKF includes Layer Decoupled EKF, Node

Decoupled EKF, and Fully Decoupled EKF. Each one of them reduces the computational

burden compared to EKF. The weight training algorithm using DEKF for MLFFNN is well

described by [14], and for recurrent networks by [11],[12].

2.4 Node Decoupled Extended Kalman Filter

Among the family of DEKF, Node Decoupled Extended Kalman Filter (NDEKF)

where the weights of the network is decoupled by node, exhibits a substantial reduction of

the computational complexity and the memory requirement. Other types of DEKF such as

the layered DEKF, in which the weights are grouped by layers, and the fully DEKF, where

each of the weights are decoupled, also reduce those unwanted complexity and memory re­

quirements. The reduction rate of the computational burden for FDEKF is the least among

the DEKF family, but it yields more errors compare to the NDEKF due to the less available

error covariance matrix. LDEKF, on the other hand, yields less error, but computational

burden is still much higher than the one of NDEKF [1]. With these characteristics of the

DEKF family, NDEKF is chosen as a neural network training algorithm that takes the ad­

vantage of both the reduction of the computational complexity and the resultant accuracy.
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During the weight updates of the neural network, NDEKF recursively updates a

smaller part (i.e. matrix that represents the weights grouped by nodes) of the error covari-

ance matrix at a time and continues until all the nodes in the network are updated.

The NDEKF procedure is based on the following state variable representation

[1],[2]:

NDEKF Algorithm

9

[Rk + L(H~fp~H~tl
i=l

P~H~Ak

where

g: The number of weight groups

w: Estimated value of weight w for group i

P: Approximate error covariance matrix of w for ith group's weights

K: Kalman filter gain matrix

c: Error between desired and actual outputs

R: Measurement noise covariance matrix

Q: Process noise covariance matrix

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

H: Matrix of derivatives of the network's outputs with respect to all trainable

weight parameters

Assume the network architecture has N outputs, M weights, and the number

of nodes in the network as G. Then, the computational complexity for the EKF proce-

dure is O(2M2N) for (2.2.1), O(N2M + M 2 N) for (2.2.2), O(NM) for (2.2.3), and

14



0(2M2N) for (2.2.4), thereby the overall complexity is O(NM2
). Similarly, the one for

NDEKF procedure is 0(2 L;=l Ml N) for (2.4.1), 0(N2M + M 2N) for (2.4.2), O(NM)

for (2.4.3), and 0(2M2N) for (2.4.4), thereby the overall computational complexity is

0(N2G + L~l Ml).

Note the matrix inversion in (2.2.1) and (2.4.1) requires 0(N3), operations, but

this is not significant to overall computational complexity since M » N [25].

3330

3330 .a. 3330

1r<lUI_" 2nd_to 3nI ......2nd _ 3nl_ 00IlM_

Figure 2.4: Block diagonal representation of the approximate error covariance matrix P for
100-20-10-100 neural network. Note the figure is not scaled.

While EKF generates an error covariance matrix P where each pair of wights in

the network are stored, NDEKF performs the decoupling of weights by node. Then the

only parts we need to consider are the interdependent weights that are fed into the same

node, ignoring the mutually exclusive weights. For the neural network whose architecture

is 100-20-10-100 as an example, the memory required is 11088900 for EKF while 220530

for NDEKF, which is only 1.989 %. With this decoupling technique, the error covariance

matrix can be reduced as shown in the Figure 2.4.

15



2.5 Failure Detection and Identification Scheme

A plant may be running in a normal or fault condition. Based on a bank of both

normal and fault conditions as a priori knowledge, the neural network with the introduced

NDEKF as a training method stores those conditions in the weights of the network. In this

section, the neural network based classifications in both time and frequency domain FDI

are introduced.

2.5.1 Neural network based classifier

Once a normal condition and failed conditions for a system are prepared, training

inputs are fed into the system to obtain a set of inputs and outputs for each condition,

which are used to train the neural network based on NDEKF algorithm. The trained neural

network remembers the characteristics of the condition by storing them in the weights of

the network.

To detect and identify the system condition, the Mean Square Errors (MSE) be­

tween the output of the actual system (vibration signal) and the output of the neural network

for all the conditions are utilized to classify the current conditions.

Let x be an observation vector when the task is to assign x to one of K classes.

A decision rule in terms of discriminant functions is written as follows:

Decide x E 'l/Jk if j(k)(x) =minj(j)(x)

where j(k) is the discriminant function for class 'l/Jk. Therefore, a classifier is composed

of K discriminant functions. In the case of a neural network classifier, the kth output unit

corresponds to the discriminant function for 'l/Jk.

16



2.5.2 Time domain analysis

When an input signal is fed into the plant, the same input is fed into neural net-

work. The plant output is then compared with neural network output. Running a plant with

a bank of neural network as shown in Figure 2.5 yields the residuals et,i = Y - Yi, where Y

is the signals from sensors on the plant and Yi is the output from the neural network. The

residuals are then used to identify the current condition of the plant.

d n

t LJ
x -1 Plant YI ~

I""
~ "Vu +

Norma~ion el'o~
NDEKF Based ~ y, +
Neural Network ~

~ y, el.1~
Current

(A priori knowledge -< +Failed Condillon 1 ~t'2Y TakeMMSE_ Condition
~ ...~ -for plant conditions)

Fa~ed Condition 2 ••••~ YN +i i !

Fajl~nn - et,N

'-

Condition Monitoring Scheme

Figure 2.5: Diagram of FDI scheme with time domain analysis

A condition of the plant using time domain analysis(CT) from time 0 to T(sec)

with N number of available conditions can be identified by

CTmin = min(Ct,l, Ct,2,"', Ct,N) where Ct,n = ~ t e;,n(i)
i=O

The time T should reasonably be large since we want to know the trends of the plant and

want to avoid the generation of false alarm (intermittent misclassifications) due to possible

dramatic changes in the plant condition.
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2.5.3 Frequency domain analysis

Another FDI scheme is the frequency domain analysis approach. This approach

is more popular than time domain analysis, especially when the feature of the vibration

signals are more important factor. Frequency domain analysis is also popular since most

plants as well as the signals from sensors are tend to be in periodical form, which is easy

to extract the vibration characteristics from the frequency domain with Fourier transform

techniques [15].

When an input signal is fed into the plant and the neural network, the correspond­

ing output from the plant and the neural network are processed through the powerful and

popular Fast Fourier Transform (FFT) technique to extract the frequency characteristics of

the vibration signals. Then the residuals between the magnitude of the FFT for the plant

and the neural networks are obtained and used in a similar manner as in the time domain

analysis to identify the current condition of the plant. The diagram of this procedure is

represented in Figure 2.6.

d n

yx

" \: t----.---t---~--'l....-.IX(W)I \
I I
I I

I efo~ I
: NDEKF Based :
I Neural Network J---t~--t---t-- ef.1~ I

: (A priori knowledge Current I

: for plant conditions) e12 - Take MMSE - Condition i
i ~~r.(Nj/:
I I

\,-------------------------------------------~~~~:~~------------------------------------------~/

Condition Monitoring Scheme

Figure 2.6: Diagram of FDI scheme with frequency domain analysis
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A condition of the plant using frequency domain analysis(CF) from time 0 to

T(sec) with N number of available conditions can be identified by

CFmin = min(C/,l, C/,2, .. " C/,N) where C/,n = ~ t e},n(i)
i=O
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Chapter 3

Fault Diagnosis to Cabin Temperature

Control System

An Environmental Control Systems (ECS) [23] for an aircraft cabin use many

types of controls such as temperature, flow, and pressure. In this section, fault diagnosis

schemes introduced earlier are applied to the realistic temperature control system models

as a practical application example. A standard cabin thermal model is not an active con­

troller like a temperature controller or a flow regulator, but it is required to give a valid

representation of the thermodynamical analysis of a cabin.

The system model introduced in this thesis uses U.S. common engineering units,

and Table 3.1 lists the major quantities with metric units for reference.

The unit Rankine is a common U.S. common engineering unit for temperature

scale that sets zero at absolute zero and uses Fahrenheit degree. The conversion of Rankine

can be done through the following equation, and the comparison to other common temper­

ature units are listed in the Table 3.2.
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Table 3.1: Units of measure for the introduced modeL

Quantity Metric Unit U.S.-common engineering unit
Temperature K oR = Rankine

Pressure bar psi(pound square inch)
Volume m3 jt3

Volumetric Flow m3
cjm=K

W m2n

Heat Transfer Rate Btu*
K hl/R

Power W tu
h".

*Btu (British thermal unit) =1055.055851

Table 3.2: Comparisons of temperature units

d Abs. Temp. Ice to Water Water to Vapor
F -459.67 32 212
C -273.15 0 100
K 0 273.15 373.15
R 0 491.67 671.67

3.1 Environmental Control System (ECS)

Nearly all commercial aircraft manufactured today use Environmental Control

System (ECS) based on bleed air that is the high-pressure hot air (200kPa, 3920 F) ex-

tracted from the engine core through bleed air openings in the side of the engine as de-

scribed in the Figure 3.1 [24]. The bleed air is then bypassed to air-conditioning 'packs,'

where it is cooled and expanded in a rotating air-cycle machine to produce low-temperature

air (80kPa, 41 0 F). In the mixing manifold, the air from air-conditioning pack is mixed

with extracted cabin air that passes through recirculation fans and filters, and then is dis-

tributed to zones in the cabin. Trim air is hot bleed air (80kPa, 2000 F) that is depressurized

by throttling valve.
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Zone 1

Cabin
Zone 2

Cabin
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Figure 3.1: The standard cabin air distribution system.

3.2 Cabin Temperature Control System

Cabin temperature control system on current aircraft is normally composed of

electronically powered actuators and valves. A cabin air temperature is normally adjusted

by varying the temperature of the amount of trim air mixed with supply air to cabin diffusers

(75kPa, 590 F).

Some of the factors that would be necessary in terms of the design and complexity

of the temperature control system are a. Aircraft size and mission, b. Type of power

available, and c. System load requirements. The least sophisticated type of temperature

control system acts as a feedback controller where a cabin air temperature sensor initiates

the repositioning of valve angle to vary the amount of hot air that goes into cabin. However,

this simple control system tends to cause an excessive cabin temperature cycling called

'hunting' due to the relatively large thermal lag of the cabin temperature.
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More sophisticated control system can be consists of a supply air temperature

sensor, a cabin air temperature sensor, and an anticipator to provide some anticipation and

reduce the magnitude of the cabin temperature excursions.

For large cargo aircraft it is necessary to have multizone temperature control as

there is the possibility of widely varying loads at different sections.

.3.2.1 Standard Cabin Temperature Control System

The analysis of the standard cabin temperature control system model requires

the cabin air temperature (Tc) , cabin air temperature selected by a pilot (Tsel )' and the

temperature of the duct air that enters the cabin (Td). The output of the model is the angle

of the mixing valve that varies the duct air Td [23].

The overall standard cabin control system in block diagram form is illustrated in

Figure 3.2. The control features of the standard model include an integral controller and a

temperature anticipator.

An integral controller consists of an integrator with lead-lag compensation. An

integrator is used to achieve a zero steady-state error characteristic for the cabin tempera­

ture error signal Ct, while the lead-lag compensation is used to improve the dynamic char­

acteristic of the model. The output of the controller is the a reference mixing valve angle

Bre! (deg) that represents a degree of angle to move from current valve position.

A temperature anticipator is to prevent or reduce overshooting the desired tem­

perature settings. Just before the desired temperature is reached, the valve is adjusted to

have a larger angle or a smaller angle. However, the heat remaining in the system brings

the resultant temperature off from the desired temperature. A heat anticipator increases or

decreases the heat before the temperature overshoots, and this is particularly effective for

systems that involve a large thermal lags or varying thermal loads like a cabin.
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Figure 3.2: The overall standard cabin temperature control system in block diagram form.

3.2.2 Controller Analysis

The relationship of inputs and outputs for the controller represented in Laplace

notation is

where

ft : The cabin temperature error signal

Bre! : Reference mixing valve angle

K 1 (h~~~) : Controller constant

(3 ( Btu).
1 hroR .

(3 ( Btu).
2 hroR .

Lead compensation time constant

Lag compensation time constant

The time domain representation of the controller is represented by
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dfJref = (&)f3 E + & JE dt _ fJre!
dt fh It fh t fh

Actuator Analysis

The mixing valve actuator is modeled as depicted in Figure 4.2, where

W max (~~U) : Maximum mixing valve angular velocity

W (~~U) : Actual mixing valve angular velocity

f33 (~~U) : Mixing valve time constant

The rate limiter represents the limitation of the mixing valve angular velocity and

can be represented as

WfJ=

Wmax + e(wref - w max )

Wref

if wref > Wmax

if -wmax :::; wref :::; Wmax

-Wmax + e(wref - w max ) if wref < -Wmax

where wref = fJr53-fJ and e is an arbitrarily positive small number.

The valve angle 0 is represented in Laplace domain by

0= '::!i..
s

and in time domain by

dfJ
dt = WfJ'

3.2.3 Temperature Sensor

A general expression that describes a temperature sensor is

T ~sensed = Ts+l
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where T is sensor time constant. Accordingly, the sensed cabin temperatures Tcs is repre-

sented by

(T) -~c s - Tls+1

(T) ---Li..-
d s - 72s+1

An anticipator is used for the duct air temperature, and the output (Td)d is pro-

portional to the time derivative of the sensed duct air temperature. The anticipator, thus, is

represented by

Manipulations of the equations given earlier yields

With the variables (Tc)s and (Td)d compared to the cabin air temperature selected

by a pilot (Tsel (0F)), the temperature error signal tt is given by

When the system is at steady state, the error is zero.

3.3 Cabin Thermal Model

A cabin thermal model is a component that describes the thermodynamic repre­

sentation of a typical aircraft cabin and is a necessary link between the two models, the

model of the airflow into a cabin and the model of the cabin temperature and pressure

control systems which require the cabin air temperature as an input value.
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Although the cabin thermal model derived in this section is appropriate for rel­

atively small cabins such as in battle plane and bombardment aircraft, it would be more

appropriate if the model is used as a multizone analysis for large cabins such as in com­

mercial airplanes and cargo aircraft.

For the thermodynamical analysis of the cabin, the heat input/output and heat

storage rate that describes how fast a heat can be absorbed by an air are considered. In

an airplane the air conditioning system supplies the air that could be a warm or cold air

to the cabin as a heat source. We also have heat sources from cabin equipments of the

cabin, such as the meal, electronics, lumps, and so on. We can't forget that the passengers

and crews also generates heat. On the other hand, the heat is absorbed by the wall that

is cooled down by the ambient air whose temperature is -650 F at typical cruise altitude

(36000jt (llOOOm)), and also the heat is going back to the air conditioning system. Figure

3.3 illustrates the cabin thermal model in block diagram form.

The cabin thermal model is the model that describes the typical aircraft cabin

thermodynamically and is based on an energy equation where heat flow inputs and outputs

are equated as following:

Energy Equation: HI + Qm + Qc = Qair + H 2 + QWi

The definition of the components above is following:

Heat Flow Inputs:

1. HI (~~U) : The enthalpy of the air entering the cabin

2. Qm (~~U) : The heat flow from the equipment mass

3. Qc (~~U) : The heat generated from passengers

Heat Flow Outputs:
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Figure 3.3: Cabin Thermal Model

4. Qair (~~U) : The heat storage rate of the cabin air

5. H2 (~~U) : The enthalpy of the air leaving the cabin

6. QWi (~~U) : The heat flow into the cabin walls

Ambient Air
Temp

The thermodynamic representation of each of the terms above are defined as following:

1. The enthalpy of the air entering the cabin:
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HI (~~U) : The enthalpy of the air entering the cabin

WI: The flow rate of the inlet air

Cp : The mean specific heat of humid air calculated

T I : The temperature of the inlet air

The specific heat means the amount of heat required to change its temperature by

one Kelvin. The specific heat of humid air is calculated by first calculating the specific heat

of dry air. The specific heat of dry air is calculated by the following polynomial equation:

(Cp)air = 0.24876 - 0.4204563xlO-4T + 0.5767857xlO-7T 2
- 0.1493056xlO-loT 3

where T is the temperature of the air

The specific heat of humid air is then calculated by the following equation:

c - (Cp )air+0.46SH
p - l+SH

where S H is the specific humidity of the air

2. The heat flow from the equipment mass here includes the heat flow generated from

the cabin equipment mass such as electronics, oven, and lights. This heat flow can be ap­

proximated by the following equations where the equality on the left describes the static

equation, and the on the right describes the dynamic equation. The dynamic equation prop­

agates the time (note that the equipment temperature is a function of time), and the static

equation solves the value at that time. UAm is the overall conductance that works as a

measure of how fast the heat of the equipment mass is absorbed by the cabin air.
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The above equations can equivalently be represented in state-space form as:

. UA [ ] [ Qe ]T - -~T + 1 UAm
m - mmCm m mmCm mmCm T

cab

Qm=UAmTm+ [0 -UA".] [:~]
where

mm (~~U) : Cabin equipment mass

em (~~U) : Specific heat of mass

Tm (~~U) : Equipment temperature

UAm (h~~~) : Overall heat transfer coefficient between cabin air and internal equip-

ment mass

Qe (~~U) : The heat generated by lumped equipment

3. The heat generated in the cabin other than equipment (i.e., from passengers and crews):

Qc (~~U) : User input

A person just sitting produces 400( ~~U) and physically active people produces

1450( ~~u ). Therefore, Qc can be approximated as

Qc( ~t;:) =(num. of passengers)x(400( ~~U))+ (num. of crews)x(1450( ~~U))

4. The heat storage rate of the cabin air is the rate that describes how fast heat is stored into

the air and is based the ideal gas law that takes the cabin air pressure, air temperature, and

the cabin volume into account. The heat storage rate is defined as:
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Q C IfIJ:.JJJL
air = mcab p dt

where m - PeabVeab
cab - RTeab

Pcab (~~u) : Cabin air pressure

T/ (Btu). Cabin volumeVcab liT .

T. (Btu). Cabin air temperaturecab liT .

R (~~U) : Gas constant

5. The enthalpy of the air leaving the cabin is calculated using a similar equation as for

the enthalpy of the air entering the cabin.

W2: The flow rate of the exit air

Cp : The mean specific heat of humid air calculated.

T2: Cabin air temperature

6. The heat flow stored in the cabin walls due to the ambient air can be calculated as

following equation:

with an energy balance equation for the walls where the change of the uniform

wall temperature Tw with its mass and the specific heat is equated with the enthalpy differ-

ence between the cabin air and the ambient air as following:
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On the right side of the equation, the difference of the temperature between cabin

air and walls are taken with its conductance into account, and the one between the wall and

the ambient air is computed similarly. The sum of these differences is then used to find the

overall heat loss Qwi

The equations can equivalently be represented in state-space form as:

where

m w (~~U) : Cabin wall mass

Ow (~~U) : Specific heat of walls

Tw (~trU) : Uniform wall temperature

Tree (~~U) : Recovery air temperature

UAi (h~~~) : Overall heat transfer coefficient (conductance) between cabin air and

cabin wall mass

UAo (h~~~) : Overall heat transfer coefficient (conductance) between cabin wall

mass and ambient air

Additionally, the following inputs to this cabin thermal model are required:

V';;ab (ft3) : Cabin volume
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Qe (~~U): Heat generated by equipment within cabin

Qc ( ~~U): Heat generated in the cabin other than Qe

UAm (h~~~) : Overall heat transfer coefficient between cabin air and internal equip-

ment mass

UAi (h~~~) : Overall heat transfer coefficient between cabin air and cabin wall mass

UAo (h~~~) : Overall heat transfer coefficient between cabin wall mass and ambient

air

3.3.1 Mixing Valve Analysis

A control used to change the amount of hot air in the cabin temperature control

system is a butterfly valve as described in Figure 3.4. Note that the temperature of the hot

inlet air is 392 degree, thus the amount of the air passing the valve is only a small amount.

Mixing Valve Angle~ I

Medium Pressure Cool Air 0$
from Mixing Manifold U t
75kPa (10.9 psia). ps ream

59F(15C)

Medium Pressure Hot
Trim Air from Engine

80kPa (11.6 psia).
392F(200C)

I(}

o$;?r
1

/

d

Cabin Air
75kPa (10.9 psia).

72.32F (22.4C)

Mixing Valve Actuator

Figure 3.4: Mixing Valve where hot air is varied by butterfly valve.

The flow rate of the air that bypasses a butterfly valve is given by the equation
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where

w(JiL) : The flow ratesec

(Cd) v : The discharge coefficient

Av : The geometric area of the valve

PI (psia) : Upstream pressure

P2 (psia) : Downstream pressure

T (0R) : Air temperature

(Ncs)v (~trU) : Chester Smith compressible flow factor

Assume the valve cross section is circular, then the geometric area of the cross

section is given by

Av = 7rf (1 - cos())

where

d(in2 ) : Valve and duct diameter

()(deg) : Valve angle

Chester Smith Function

The Chester Smith Function represent Ncs that is the ratio of ActualFlf~ and is
max~mum ow

represented by

where

w, = 1 °fB.. P1 P2 < crit

°fB.. P1 P
2

> crit

PI (~~U) : Cabin air temperature sensor time constant
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P2 (~~U) : Duct air temperature sensor time constant

'Y : Ratio of specific heat g;
p. . - (5..) . - (_2_)-2; : Critical pressure ratio where the flow is 'choked'cnt - P2 cnt - 1+1

or sonic flow for given values

The value of Chester Smith Function Ncs for various downstream pressure P2 is

shown in the Figure 3.5. When the downstream pressure P2 decreases, an increase of flow

cause the value of Ncs to be 1 that corresponds to sonic flow. On the other hand, if the

downstream pressure P2 increases, the value of Ncs is zero and no flow is passing valve

from upstream side to downstream side. In fact, the flow is reversed.

o'--_-'-_----"'--_--'-_--'__-'-_-L-l.__-'--_..--l.,----'

o 2 4 6 8 10 12 14 16
Downstream Pressure P2 (psia)

Figure 3.5: Ncs VS Downstream Pressure

Figure 3.6 shows the flow rate of the inlet air WI for various downstream pressure

P2 and mixing valve angle B. While the ratio of upstream and downstream ~ is between

1 and 1.89, the flow is in normal condition,and this is where typical cabin pressure 10.875

psia is in.
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Figure 3.6: Downstream Pressure VS Flow Rate of the Inlet air wI.
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Chapter 4

Simulation

In this chapter, cabin temperature control system is used to verify the feasibility

of applying neural network with NDEKF algorithm for fault diagnosis. The training of the

neural network and the diagnosis of the cabin temperature control system is performed by

MATLAB, while the sensor data for the model are obtained through the implementation by

Simulink. The fault diagnosis is performed by using banks of neural networks.

4.1 Cabin Temperature Control System for Boeing 767

The parameter values used for the cabin temperature control system are specifi­

cally for Boeing 767, and they are listed in the Table 4.1.

The inputs to the cabin temperature control system is the cabin air temperature

Tsel selected by pilot are assumed to be

Tsel = lOsin(27l" 610t) + 75[0F]

The output of the system is the angle of the mixing valve. The implementation

of the standard cabin temperature control system by Simulink is shown in Figure 4.1. As
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Table 4.1: Cabin temperature control system model parameters for Boeing 767

Symbol Description Value

1!;;ab Boeing 767 cabin volume 10594.4 ft 3 (319m3 )

Teab Typical cabin temperature 75 F(23.89°C)
SH Typical cabin humidity 15 %
Peab Typical cabin pressure 12.8 psi
WI Flow rate of the inlet air 2388 efm
Wz Flow rate of the exhaust air 2388 efm**
mm Cabin equipment mass 1506.1 ff
m w Cabin wall mass 8078.7 ft 3

Qe Heat generated from passengers and crew 2000 IZ!~
Qe Heat generated by lumped equipment 5000j!l!~

UAm UA* between cabin air and internal equipment mass 1.5 lb!~
UA UA* between cabin 1600 IZ!~
UAo UA* between cabin 1300Il!~
Cm Specific heat of equipment mass O.4ll!~
Cw Specific heat of walls 3 tu

IbOR
Tm Cabin equipment temperature 75 of

Tw Uniform wall temperature 75 of

Tree Recovery air temperature 20°F

* UA: Overall heat transfer coefficient

** 1128 efm of overboard exhaust and 1260 efm of leakage [24]

depicted in the figure, the cabin thermal model described by Figure 3.3 is embedded into

the cabin temperature control system described by Figure 3.2.

4.2 FDI performance evaluation of NDEKF based neural

network

Normal condition and three fault conditions on the mixing valve actuator, the

anticipator, the duct air temperature sensor, and the cabin temperature sensor are considered

and simulated on the monitored systems. The construction of neural network for those
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Figure 4.1: The implementation of Standard Cabin Temperature Control System by
Simulink.
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Table 4.2: The parameter values of components in normal and fault conditions (1: Cabin
Air Temperature Sensor, 2: Duct Air Temperature Sensor, 3: Anticipator, 4: Mixing Valve
Angle).

rl 1 r2
2 K 2 3 /33

4

NM 0.1 0.1 1.6 0.9
Fl 2.6 3.2 0.3 3.7
F2 5.4 6.7 0.8 2.2
F3 6.7 8.5 2.4 4.6

conditions are based on MLFFNN with NDEKF, where the network architecture is 100-

20-10-100 as introduced in Chapter 2. The function used in the neural network nodes in

the two hidden layers is a Bipolar activation function, and the one used at the output node

is a linear activation function. The activation function and its derivative, which is used for

computation of derivative matrix during NDEKF procedure, are the following:

. 2ex 1 2

f(x) = (ex + 1)2 = 2"(1 - f (x))

The cockpit's setting for the cabin air temperature (i.e., Tsel ) and their corre­

sponding highly nonlinear outputs from the cabin temperature control system model in a

normal condition and three fault conditions are used as training sets for neural network.

The criterion of an MSE value for the training (i.e., identification) of the network is set to

be 0.1.

An example of the failure scenario for each of the four components used for FDI

performance evaluation is depicted in Figure 4.2. Each condition lasts for one time period,

and the scenario is fed by two different input sequences; the first sequence from time 0 to

4, and the other sequence from time 4 to 8, where inputs are as following:

{

lOsin(21r(6~)t) + 75, for time 0-4
Tsel =

9.5sin(21rUo)t) + O.5sin(21r(~)t) + 75, for time 4-8
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Figure 4.2: Failure sequence for cabin temperature control system

The inputs are made to be different so that the simulation results show the robust-

ness of the neural network against different inputs.

Figure 4.3-4.6 show the responses and the neural network outputs of the mixing

valve actuator, the anticipator, the duct air temperature sensor, and the cabin temperature

sensor respectively in the four conditions for the cockpit's cabin air temperature settings

Tsel above. The figures are in the order of normal condition (NM), failure condition I (Fl),

failure condition 2 (F2), and failure condition 3 (F3) from the top, and the parameter values

of components in normal and fault conditions are depicted in the Table 4.2.

As can be seen from the figures, the neural network outputs for all the conditions

are generated at each time interval and compared with outputs from components. The

condition where the difference between component outputs and the neural network outputs

are the least indicates the current condition of a component.

Figure 4.7-4.10 shows the component outputs and neural network outputs in fre­

quency domain, where the four conditions are shown for eight time intervals from top to

bottom.
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Figure 4.3: Responses of the mixing valve angle from the component and neural network
in time domain.

Figure 4.4: Responses of the anticipator from the component and neural network in time
domain.
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Table 4.3: Training error between desired outputs and the neural network outputs for cabin
air temperature sensor.

Inputs 1 Inputs 2
(Time 1 to 249) (Time 250 to 500)

NM 0.014518 0.0093919
Fl 0.0061599 0.0031889
F2 0.048701 0.024153
F3 0.033858 0.024203

Figure 4.11 shows the 3-dimensional representation of frequency domain analysis

for normal condition as an example. The FFT amplitude of the neural network output for

all the conditions are simultaneously compared with the plant outputs. When streams of

sensor signals come from a sensor mounted on or in a plant, the data at each time division is

collected and their magnitude is computed through FFT for each time interval. The number

of data available in a time should reasonably be large to avoid false alarm. In the simulated

example, each time period has 100 time domain data.

With the MSE between the actual plant output and the neural network output in

time domain and frequency domain respectively, MMSE successfully shows the condition

at each time interval as represented in Table 4.4.

The experiment with EKF and standard BP showed that NDEKF converged in

much less iterations to meet the criterion (MSE of 0.1) as expected. It took 2 iterations for

NDEKF, 62 iterations for EKF, and 147 iterations for standard BP.

44



600

lhL

·

kL

NM

600~.V\EF1 6oolhL'kLF2 600~'V\LFrNN I. . ;\ - Sensor1400 >....... 400 j .•.......... 400IJ···· 400 ~ .. < .

~ 200 200'" .... __ ~_______ 200 .. 200· . ~_.:..~. _
o . 0 O· 0 .o 2 0 2 0 2 0 2

600

lhL

·

kL

················ 600~.~ 600lhL·~················· 600~'KL'.
1400 f .. ' •.• 400!" ...••. ....... 4.00.... .... ..•• •. "" IA .•..................
E 200 .. . 200··· ... ". 200··· ... ". 200· .f \ .'.
« , -'--'-'~" : . . ----:-.,~_.__..__..o 0 0 0o 2 0 2 0 2 0 2
600~V\E 60°lbt·V\E················· 60°lbt'~"""""""" 60°lbt·V\E················i "" I' .•. '00 . .. .• .•. '00 II·.· ... ""' •...

~ 200 ..' .. '.' . ... 200····· '.' 200······.· 200 '. .....o -.:..~---. 0 · 0 -, 0 ·o 2 0 2 0 2 0 2
600~.~ 600~.V\E 600~'KL''''''''''''''' 600~V\E.I "" /\. ""..'. ..• .. '00 . . . ..•. .. . .. '00 . .•.. •.. •

~ 20: . __.._.___ 20: .. ...• _. 20:. 20:'" ... ...•.......
o 2 0 2 0 2 0 2

Q) 600

LE

··········•.•. ········ 600

LE

··········•. ·····•·· 600LE··········••·.········ 600LE············.
~ 400 .. .• 400···· '.' ....... 400··· '.' ....... 400··· '.' .
~ .,,:. .

~ 200 200····· ......•. ....... 200·· '.' ....... 200·· ..• .
. '. .00' 0 O·o 2 0 2 0 2 0 2

600LE··················· 600LE··················· 600LE··················· 600LE··················. - . ,

CD: :, : :
-g 400 .. . <. . . . . . .. 400····· ..> . . . . . .. 400'" ..... <. 400··· < . . .

J20: ...........•........ 20:' ..........•. ....... 20:'" ........•. ....... 20:' ..........•........
o 2 0 2 0 2 0 2

600LE······· 600LE' 600LE··················· 600LE···················
CD " ' " ' : ' :

-g 400 <. . . . . . .. 400········· .'. .. ..... 400'" 400 <.

J": . •... 20:. .•. .. •.. .. 20:" .• •.... ': ... .. .•. . .
o 2 0 2 0 2 0 2600

LE

··················· 600

LE

········· 600LE·················· 600LE···················
~400 ..........•.......... 400 ...........••.. 400 ..........••........ 400 ...........••.........
~ . , " . .
~200··················· 200··········.········ 200··········.········ 200··········.·······

. .

o 0 O· 0o 2 0 2 0 2 0 2
Hz Hz Hz Hz

Figure 4.7: Responses of the mixing valve angle from the component and neural network
in frequency domain.
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Figure 4.8: Responses of the anticipator from the component and neural network in fre­
quency domain.
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Figure 4.9: Responses of the duct air temperature sensor from the component and neural
network in frequency domain.
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Figure 4.10: Responses of the cabin air temperature sensor from the component and neural
network in frequency domain.
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Figure 4.11: The 3-dimensional representation of frequency domain analysis.

Table 4.4: The current conditions of four components from time 1 to 8 based on time and
frequency domains.
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Chapter 5

Conclusions and Further Research

5.1 Discussion

In this thesis, the advantages of the neural network with the NDEKF method

with its application in diagnosing through system identification technique both in time and

frequency domain are introduced. The use of the NDEKF substantially reduces the com­

putational complexity and memory requirements, in which EKF has disadvantages. The

proposed FDI techniques are also effective when suitable process models are not available

or when it is too complicated to be extracted from the data. The results show the capability

of diagnosing in both time domain and frequency domain, where the choice of the do­

main is component dependent as each has its own advantages. The introduced techniques

were demonstrated on the cabin temperature control system with parameters specifically

determined for Boeing 767 aircraft as a real application example.

This task was developed by means of a number of intermediate stages to be

achieved:

1. To present a general framework and background idea for neural network and Kalman

filtering algorithm.

50



2. To show a node-decoupled extended Kalman filtering (NDEKF) algorithm with the

its idea and the effectiveness in the reduction of computer complexity and memory

requirements.

3. To introduce the failure detection and identification scheme through the neural net­

work based system identification in both time and frequency domain.

4. To present the mechanism of how a standard cabin temperature control system for

current aircrafts.

5. To show the feasibility of the proposed machine condition monitoring system through

simulation.

The results presented in the simulation indicate that these goals have been met

and that the overall objective of the thesis has been achieved.

5.2 Further Research

The proposed machine condition monitoring system have been used to monitor

the current condition of a system. However, the proposed technique can also be applied

and combined as prognosis schemes that are based on Kalman filtering based [20], wavelet

neural network [21], and the nonlinear combination of neural network, Kalman filtering,

and wavelet network [22].

In this thesis, the cabin temperature control system model is used as environ­

mental control system (ECS) application example, but the proposed technique can also be

applied to other models such as pressure regulators, flow controllers, and cabin pressure

controllers.
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